首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The implicit code ABAQUS/Standard is used to simulate the formation of continuous and segmented chips. Using the described model, the idealized process of friction‐less machining of an elastic ideally‐plastic material is studied. It is shown that Merchant's classical shear angle relation does not hold, as chip formation does not minimize the energy as assumed by Merchant. The model is also used to study segmented chip formation using a realistic material law for the Titanium alloy Ti6Al4V at high cutting speeds.  相似文献   

2.
The purpose of this work is to simulate the microstructure development of aluminum alloys during hot metal forming processes such as extrusion with the help of the Finite Element Method (FEM). To model the thermomechanical coupled behavior of the material during the extrusion process an appropriate material model is required. In the current work a Johnson–Cook like thermoelastic viscoplastic material model is used. To overcome the numerical difficulties during simulation of extrusion such as contact problem and element distortion an adaptive meshing system is developed and applied. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Based on physical metallurgy rules and experiential equations, models for microstructure analysis on IN 718 alloy in the round rod hot continuous rolling process has been developed using the finite element method (FEM) on the software ANSYS/LS-DYNA. The dynamic and metadynamic recrystallization models in and after deformation, the grain growth models in the compensated reheating process for IN 718 alloy are regressed, and corresponding processes are involved in these models. For a real rolling practice, the calculated central grain sizes were examined and are in good agreement with the measured ones. The element in the center of the workpiece is a typical one possessing the maximum of the effective strain, the temperature and the grain size in the rolling process. In the hot continuous rolling process, the relationship between the final grain size of the typical element and the inlet velocity of the first stand has been regressed by FE analysis, and the lower rolling speed is beneficial to the grain refinement.  相似文献   

4.
The cold crucible, or induction skull melting process as is otherwise known, has the potential to produce high purity melts of a range of difficult to melt materials, including Ti–Al and Ti6Al4V alloys for Aerospace, Ti–Ta and other biocompatible materials for surgical implants, silicon for photovoltaic and electronic applications, etc. A water cooled AC coil surrounds the crucible causing induction currents to melt the alloy and partially suspend it against gravity away from water-cooled surfaces.  相似文献   

5.
从金属切削理论出发分析了钛合金插铣过程的切削热产生机理,推导出工件的热传导方程式,并在此基础上建立钛合金插铣的数学模型,应用Galerkin有限元方法对工件的热传导方程进行推导计算,随后利用Matlab进行数值模拟,最终得到工件稳定后温度分布图.通过数值计算结果与实验结果对比,验证了有限元模型具有可靠和高精度优点.对钛合金插铣过程加工参数的优化和刀具的设计提供了重要参考依据.  相似文献   

6.
The cutting of metals is an important process in manufacturing and challenges established methods in the field of computational mechanics. The particle finite element method (PFEM) combines the benefits of particle based methods and the standard finite element method (FEM) to account for large deformations and separation of material. In cutting simulations the workpiece is realised as a set of particles, whose boundary is detected by the α-shape method. After the boundary detection, the particles are meshed with finite elements. Since metals show a plastic behavior under large deformations, a suitable material model needs to be considered. Numerical examples show the effect of the choice of the parameter α on the cutting force. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
For a consequent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain–rate effects on the mesoscale, is required. Therefore, the modelling approach using numerical homogenization techniques based on the simulation of representative volume elements which are modelled by the extended finite element method (X–FEM) is currently extended to nonlinear material behaviour. While the glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law accounts for strain–rate dependence and inelastic deformation of the matrix material. This paper describes the process of finding suitable constitutive relations for the polymeric matrix material Polypropylene in the small–strain regime. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, four 3-D finite element models are developed to simulate the whole rod rolling process of GCr15 steel. The distribution and evolution of different field-variables, such as effective strain, effective strain rate and temperature, are obtained. Based on the simulated results and the microstructure evolution models of the steel, the paper designs a FORTRAN program to predict the evolution of recrystallization behavior and austenite grain size in rolled piece during the rolling. The surface temperatures of rolled piece calculated by FEM agree well with measured values. Comparison between calculated values and measured ones of grain size shows the validity of the program.  相似文献   

9.
O. Schilling  S. Reese 《PAMM》2004,4(1):370-371
An appropriate method for the simulation of continuous forming processes is the material point method (MPM) [1],[2] which combines the viewpoints of fluid dynamics and solid mechanics. The MPM and related methods [3] are derived from the particle‐in‐cell methods [4]. Bodies are discretised by Lagragian particles with pointwise mass distributions. The differential equations in their weak form are solved on temporary meshes built of standard finite elements. At the end of each time step the particle positions are updated and the mesh is replaced by a new mesh with a regular shape. The state variables at the nodes of the new mesh are extracted from the state variables at the particles by a transfer algorithm. When particles pass element boundaries, numerical difficulties might be observed. These are eliminated by a smooth approximation of nodal data from material point data. The modified MPM has been implemented together with the FEM in one programme because the similarities of the methods outbalance the differences. On the basis of numerical examples the results of both methods are compared. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In the present study, new constitutive models for high strength steel fibre reinforced concrete (HSSFRC) have been formulated by means of a regression analysis of many experimental data (from literature) by using SPSS-statistical program. This proposed constitutive models have been employed for formulating the material finite element models to study the behaviour of HSSFRC corbels.  相似文献   

11.
12.
The prediction and simulation of material behavior by finite element methods has become indispensable. Furthermore, various phenomena in forming processes lead to highly differing results. In this work, we have investigated the process chain on a cross-shaped cup in cooperation between the Institute of Applied Mechanics (IFAM) of the RWTH Aachen and the Institute of Forming Technology and Lightweight Construction (IUL) of the TU Dortmund. A viscoplastic material model based on the multiplicative decomposition of the deformation gradient in the context of hyperelasticity has been used [1,2]. The finite strain constitutive model combines nonlinear kinematic and isotropic hardening and is derived in a thermodynamically consistent setting. This anisotropic viscoplastic model is based on the multiplicative decomposition of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong-Frederick kinematic hardening. The constitutive equations of the material model are integrated in an explicit manner and implemented as a user material subroutine in the commercial finite element package LS-DYNA with the electromagnetical module. The aim of the work is to show the increasing formability of the sheet by combining quasi-static deep drawing processes with high speed electromagnetic forming. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Abrasive water jets (AWJs) are finding growing applications for machining a wide range of difficult-to-machine materials such as titanium alloys, stainless steel, metal matrix and fibre reinforced composites, etc. Current applications of AWJs include machining of Titanium alloys for aircraft components and bio-medical implants to removal of aircraft engine coatings. This paper presents the application of an elasto-plastic model based explicit finite element analysis (FEA) to model the erosion behaviour in abrasive water jet machining (AWJM). The novelty of this work includes FE modelling of the effect of multiple (twenty) particle impact on erosion of Grade 5 Titanium alloy (Ti-6Al-4V). The influence of abrasive particle impact angle and velocity on the crater sphericity and depth, and erosion rate has been investigated. The FE model has been validated for stainless steel and yields largely improved results. Further, the same FEA approach has been extended to model the multi-particle impact erosion behaviour of Titanium alloy.  相似文献   

14.
E. Budak 《PAMM》2007,7(1):1150701-1150702
Machining is one of the most common manufacturing processes in industry due to its high flexibility and ability to produce parts which excellent quality. Chatter, a type of self excited vibrations arising in metal cutting operations, is a major limitation in machining resulting in poor quality and reduced productivity. Under certain conditions, the cutting process may become unstable yielding oscillations with high amplitudes and cutting forces. Stability analysis of the dynamic cutting process can be used to determine chatter-free machining conditions with high material removal rate. Usually, one dimensional models are used for stability analysis of machining. However, based on the geometry of the actual machining process, multi-directions would have to be used for accurate modeling of the process dynamics and the stability. In this presentation, multi directional models for turning and milling processes are presented. The effects of multi directional process mechanics on the stability are demonstrated by applications. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This article presents a comparison of two microplane constitutive models. The basis of the microplane constitutive models are described and the adopted assumptions for the conception of these models are discussed, with regard to: decomposition of the macroscopic strains into the microplanes, definition of the microplane material laws, including the choice of variables that control the material degradation, and homogenization process to obtain the macroscopic quantities. The differences between the two models, with respect to the employed assumptions, are emphasized and expressions to calculate the macroscopic stresses are presented. The models are then used to describe the behavior of quasi-brittle materials by finite element simulations of uniaxial tension and compression and pure share stress tests. The results of the simulations permit to compare the capability of the models in describing the post critical strain-softening behavior, without numerically induced strain localization.  相似文献   

16.
In the present paper, an axisymmetric two-dimensional model for powder mixed electric discharge machining (PMEDM) has been developed using the finite element method (FEM). The model utilizes the several important aspects such as temperature-sensitive material properties, shape and size of heat source (Gaussian heat distribution), percentage distribution of heat among tool, workpiece and dielectric fluid, pulse on/off time, material ejection efficiency and phase change (enthalpy) etc. to predict the thermal behaviour and material removal mechanism in PMEDM process. The developed model first calculates the temperature distribution in the workpiece material using ANSYS (version 5.4) software and then material removal rate (MRR) is estimated from the temperature profiles. The effect of various process parameters on temperature distributions along the radius and depth of the workpiece has been reported. Finally, the model has been validated by comparing the theoretical MRR with the experimental one obtained from a newly designed experimental setup developed in the laboratory.  相似文献   

17.
We present a thermodynamically based finite element scheme for rate-independent materials and demonstrate its application in modelling the rheological behaviour of granular materials. Starting from the laws of thermodynamics, we have recently developed a new class of micropolar-type constitutive relations for two-dimensional densely packed granular media. This class of constitutive laws is expressed in terms of particle-scale properties, thus providing a direct link between observed macroscopic behaviour and the underlying particle–particle interactions. Here, we demonstrate how the connection to the underlying physics can be maintained and carried through to the finite element implementation phase of the modelling process via the same thermodynamical principles used to construct the constitutive laws. Notably, the study indicates that while the traditional Galerkin-FEM method admits a range of weighting functions, the proposed formulation provides an additional constraint that narrows the choice of admissible weighting functions via the second law of thermodynamics. Additionally, this paper presents insights into the finite element implementation of micropolar models deemed to be appropriate for modelling several classes of heterogeneous media (e.g. granular materials, cellular composites and biological materials). As the kinematics and kinetics of micropolar continua are enriched by the addition of rotational degrees of freedom to each material point, the equations governing boundary value problems for such materials differ from those of other continuum models both from the viewpoint of the constitutive law and the governing conservation laws. Analysis of elastoplastic deformation of micropolar continua is presented.  相似文献   

18.
Johannes Geisler  Kai Willner 《PAMM》2007,7(1):4050009-4050010
An important contribution to global damping of mechanical devices is structural damping due tomicroslip effects with friction in joint interfaces. In order to investigate the mechanical behaviour in these contact interfaces numerically, a contact element in the context of Finite Element Method (FEM) is presented. The suggested element is an isoparametric zero thickness element which is well suited for the present problem because the contact area is known and only small relative displacements occur. Arbitrary linear or nonlinear constitutive contact models for normal and tangential contact behaviour can be implemented. Using a proper parametrisation of the contact area, it is possible to apply the element in contact interfaces lying arbitrarily in space and in interfaces discretized with distorted elements. This method is described before a numerical example is compared with experimental results. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, the constitutive modeling of nonlinear multifield behavior as well as the finite element implementation are presented. Nonlinear material models describing the magneto-ferroelectric or electro-ferromagnetic behaviors are presented. Both physically and phenomenologically motivated constitutive models have been developed for the numerical calculation of principally different nonlinear magnetostrictive behaviors. Further, the nonlinear ferroelectric behavior is based on a physically motivated constitutive model. On this basis, the polarization in the ferroelectric and magnetization in the ferromagnetic and magnetostrictive phases, respectively, are simulated and the resulting effects analyzed. Numerical simulations focus on the calculation of magnetoelectric coupling and on the prediction of local domain orientations going along with the poling process, thus supplying information on favorable electric-magnetic loading sequences. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this work a material model for shape memory alloy (SMA) fibers is presented. A constitutive model is provided which aims for computational use. The presented model incorporates all relevant material nonlinear phenomena. It takes pseudoplasticity into account as well as pseudoelasticity and further the shape memory effect (SME). The constrained SME (CSME) and the two-way SME are covered by the presented material model. The constitutive model is implemented in a one-dimensional truss formulation and in a 3D-rebar element. Both formulations are used to model fiber composite structures. Those are described by the use of a non-conforming and a conforming mesh on the mesoscale. The numerical examples show the capability of the formulation. Different meshing strategies for the fiber–matrix compound are discussed. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号