首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We report on a teaching experiment intended to foster a concept of multiplication that would both subsume students’ multiple-groups concept of whole number multiplication and provide a conceptual basis for understanding multiplication of fractions. The teaching experiment, which used a rigorous single-subject methodology, began with an attempt to build on students’ multiple-groups concept by promoting generalizing assimilation. This was not totally successful and led to a redesign aimed at promoting reflective abstraction. Analysis of this latter phase led to several significant conclusions, which in turn led to a revised hypothetical learning trajectory. The revised trajectory aims to foster a concept of multiplication as a change in units.  相似文献   

2.
    
The Measurement Approach to Rational Number (MARN) Project, a project of the ongoing Learning Through Activity (LTA) research program, produced eleven hypothetical learning trajectories (HLTs) for promoting fraction concepts. Four of these HLTs are the subject of research reports. In this article, we present the other seven HLTs We judged that the data and analyses of these seven would not separately make sufficient contributions to merit individual research reports. However, presenting these seven HLTs together was intended to meet the following goals:1. To give a broad set of examples of HLTs developed based on the LTA theoretical framework.2. To complete a set of HLTs that provide a comprehensive example of HLTs built on prior HLTs.3. To make available for future research and development the full set of HLTs generated by the MARN Project.LTA researchers have focused on how learners abstract a concept through their mathematical activity and how the abstractions can be promoted. The MARN Project continued this inquiry with rigorous single-subject teaching experiments.  相似文献   

3.
    
We discuss the theoretical framework of the Learning Through Activity research program. The framework includes an elaboration of the construct of mathematical concept, an elaboration of Piaget’s reflective abstraction for the purpose of mathematics pedagogy, further development of a distinction between two stages of conceptual learning, and a typology of different reverse concepts. The framework also involves instructional design principles built on those constructs, including steps for the design of task sequences, development of guided reinvention, and ways of promoting reversibility of concepts. This article represents both a synthesis of prior work and additions to it.  相似文献   

4.
    
Promoting deep understanding of equivalent-fractions has proved problematic. Using a one-on-one teaching experiment, we investigated the development of an increasingly sophisticated, sequentially organized set of abstractions for equivalent fractions. The article describes the initial hypothetical learning trajectory (HLT) which built on the concept of recursive partitioning (anticipation of the results of taking a unit fraction of a unit fraction), analysis of the empirical study, conclusions, and the resulting revised HLT (based on the conclusions). Whereas recursive partitioning proved to provide a strong conceptual foundation, the analysis revealed a need for more effective ways of promoting reversibility of concepts. The revised HLT reflects an approach to promoting reversibility derived from the empirical and theoretical work of the researchers.  相似文献   

5.
I discuss two ways in which the Learning Through Activity (LTA) research program contributes to scientific progress in mathematics education: (a) providing general and content-specific constructs to explain conceptual learning and instructional design that corroborate and/or elaborate on previous work and (b) raising new questions/issues. The general constructs include using instructional design as testable models of learning and using theoretical constructs to guide real-time, instructional adaptations. In this sense, the general constructs promote understanding of linkages between conceptual learning and instruction in mathematics. The concept-specific constructs consist of empirically-grounded, hypothetical learning trajectories (HLTs) for fractional and multiplicative reasoning. Each HLT consists of specific, intended conceptual changes and tasks that can bring them forth. Questions raised for me by the LTA work involve inconsistencies between the stance on learning and reported teaching-learning interactions that effectively led to students’ abstraction of the intended mathematical concepts.  相似文献   

6.
    
Whereas proficiency in performing the canonic multiplication-of-fractions algorithm is common, understanding of the algorithm is much less so. We conducted a teaching experiment with a fifth-grade student, based on an initial hypothetical learning trajectory (HLT), to promote reinvention of the multiplication-of-fractions algorithm. The instructional intervention built on two concepts, recursive partitioning and distributive partitioning. As a study of the Learning Through Activity research program, our goal was to promote particular activity on the part of the student through which she could abstract the necessary concepts. The results of the teaching experiment were analyzed and, based on conclusions from the research, a revised HLT was generated. Recursive partitioning and distributive partitioning proved to be a strong foundation for construction of the algorithm.  相似文献   

7.
Little research exists on the ways in which students may develop an understanding of formal limit definitions. We conducted a study to (i) generate insights into how students might leverage their intuitive understandings of sequence convergence to construct a formal definition and (ii) assess the extent to which a previously established approximation scheme may support students in constructing their definition. Our research is rooted in the theory of Realistic Mathematics Education and employed the methodology of guided reinvention in a teaching experiment. In three 90-min sessions, two students, neither of whom had previously seen a formal definition of sequence convergence, constructed a rigorous definition using formal mathematical notation and quantification equivalent to the conventional definition. The students’ use of an approximation scheme and concrete examples were both central to their progress, and each portion of their definition emerged in response to overcoming specific cognitive challenges.  相似文献   

8.
    
This article was prompted by the thoughtful commentaries of Norton, Tzur, and Dreyfus. Their commentaries pointed out important ideas that were left implicit or only partially explained. The clarifications made here include how the Learning Through Activity (LTA) research program differs from related research programs, the relation of the LTA theoretical framework to scheme theory, our choice to not employ the construct of perturbation in explaining learning, and the structure of hypothetical learning trajectories. In addition, I discuss a type of mathematical concept that we have not discussed previously.  相似文献   

9.
    
This paper presents a case study of Hugo’s construction of Euler diagrams to develop set-based meanings for the truth of mathematical conditionals. We use this case to set forth a framework of three stages of activity in students’ guided reinvention of mathematical logic: reading activity, connecting activity, and fluent activity. The framework also categorizes various forms of connecting activity by which students may reflect on their reading activity: connecting tasks, connecting representations, and connecting conditions for truth and falsehood (which we call meanings). We argue that coordinating such connections is necessary to justify logical equivalences, such as why contrapositive statements share truth-values. Through the case study, we document the representations and meanings that Hugo called upon to assign truth-values to conditionals. The framework should help clarify and advance future research on the teaching and learning of logic rooted in students’ mathematical activity.  相似文献   

10.
    
Realistic Mathematics Education supports students’ formalization of their mathematical activity through guided reinvention. To operationalize “formalization” in a proof-oriented instructional context, I adapt Sjogren's (2010) claim that formal proof explicates (Carnap, 1950) informal proof. Explication means replacing unscientific or informal concepts with scientific ones. I use Carnap's criteria for successful explication – similarity, exactness, and fruitfulness – to demonstrate how the elements of mathematical theory – definitions, axioms, theorems, proofs – can each explicate their less formal correlates. This lens supports an express goal of the instructional project, which is to help students coordinate semantic (informal) and syntactic (formal) mathematical activity. I demonstrate the analytical value of the explication lens by applying it to examples of students’ mathematical activity drawn from a design experiment in undergraduate, neutral axiomatic geometry. I analyze the chains of meanings (Thompson, 2013) that emerged when formal elements were presented readymade alongside those emerging from guided reinvention.  相似文献   

11.
    
In this action research, first-graders were challenged to cope with a sequence of modelling tasks involving an analysis of given situations and choices of mathematical tools. In the course of the sequence, they underwent a change in the nature of their problem-solving processes and developed modelling competencies. Moreover, during the task sequence, the first-graders spontaneously discovered the power of organizing problem data in a table. They did not merely use their existing mathematical knowledge, but also ‘reinvented’ tables as a new mathematical tool. This paper describes the gradual development of this tool as the children moved along the task sequence. Notably, the first-graders exhibited this progress in spite of having relatively little mathematical knowledge.  相似文献   

12.
By continuing a contrast with the DNR research program, begun in Harel and Koichu (2010), I discuss several important issues with respect to teaching and learning mathematics that have emerged from our research program which studies learning that occurs through students’ mathematical activity and indicate issues of complementarity between DNR and our research program. I make distinctions about what we mean by inquiring into the mechanisms of conceptual learning and how it differs from work that elucidates steps in the development of a mathematical concept. I argue that the construct of disequilibrium is neither necessary nor sufficient to explain mathematics conceptual learning. I describe an emerging approach to instruction aimed at particular mathematical understandings that fosters reinvention of mathematical concepts without depending on students’ success solving novel problems.  相似文献   

13.
    
This paper compliments two recent articles by the author in this journal concerning solving the forced harmonic oscillator equation when the forcing is periodic. The idea is to replace the forcing function by its Fourier series and solve the differential equation term-by-term. Herein the convergence of such series solutions is investigated when the forcing function is bounded, piecewise continuous, and piecewise smooth. The series solution and its term-by-term derivative converge uniformly over the entire real line. The term-by-term differentiation produces a series for the second derivative that converges pointwise and uniformly over any interval not containing a jump discontinuity of the forcing function.  相似文献   

14.
    
Computational thinking has become an increasingly popular notion in K-12 and college level education. Although researchers have accepted that abstraction is a central concept in computational thinking, they are quick to disagree on the meaning of it. A focus on reflective abstraction has led to the development of APOS Theory in Mathematics education. This has resulted in many cases of improved student learning in Mathematics (Arnon et al., 2013). Our main aim in this paper is to construct a theoretical bridge between computational thinking and APOS Theory and show that reflective abstraction can be used in the context of computational thinking.  相似文献   

15.
    
This study aims to map the learning trajectory (LT) of a student with learning disabilities (LDs) regarding the unit concept in length measurement and the usage of rulers. The article draws on data from a teaching experiment with a 10-year-old student with LDs in Turkey. Data were analyzed in two stages, including microanalysis, where each successive teaching session was separately analyzed, and macroanalysis, where the teaching sessions regarding interrelated instructional goals were analyzed to construct the LT. The main findings of the study illustrate that this student with LDs eliminated her misconceptions about the unit concept and using a ruler, accomplished the determined instructional goals to a large extent, and reached a higher level of thinking with a 4-month teaching experiment designed based on her specific developmental capacity.  相似文献   

16.
    
A learning progression, or learning trajectory, describes the evolution of student thinking from early conceptions to the target understanding within a particular domain. As a complex theory of development, it requires conceptual and empirical support. In earlier work, we proposed a cycle for the validation of a learning progression with four steps: 1) Theory Development, 2) Examination of Empirical Recovery, 3) Comparison to Competing Models, and 4) Evaluation of Instructional Efficacy. A group of experts met to discuss the application of learning sciences to the design, use, and validation of classroom assessment. Learning progressions, learning trajectories, and how they can support classroom assessment were the main focuses. Revisions to the cycle were suggested. We describe the adapted cycle and illustrate how the first third of it has been applied towards the validation of a learning progression for the concept of function.  相似文献   

17.
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.  相似文献   

18.
This article describes the development of knowledge and understanding of translations of Jeff, a prospective elementary teacher, during a teaching experiment that also included other rigid transformations. His initial conceptions of translations and other rigid transformations were characterized as undefined motions of a single object. He conceived of transformations as movement and showed no indication about what defines a transformation. The results of the study indicate that the development of his thinking about translations and other rigid transformations followed an order of (1) transformations as undefined motions of a single object, (2) transformations as defined motions of a single object, and (3) transformations as defined motions of all points on the plane. The case of Jeff is part of a bigger study that included four prospective teachers and analyzed their development in understanding of rigid transformations. The other participants also showed a similar evolution.  相似文献   

19.
GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.  相似文献   

20.
    
The purpose of this study was to examine the word-problem performance and strategies utilized by 3rd-grade students experiencing mathematics difficulty (MD). We assessed the efficacy of a word-problem intervention and compared the word-problem performance of students with MD who received intervention (n = 51) to students with MD who received general education classroom word-problem instruction (n = 60). Intervention occurred for 16 weeks, 3 times per week, 30 min per session and focused on helping students understand the schemas of word problems. Results demonstrated that students with MD who received the word-problem intervention outperformed students with MD who received general education classroom word-problem instruction. We also analyzed the word-problem strategies of 30 randomly-selected students from the study to understand how students set up and solve word problems. Students who received intervention demonstrated more sophisticated word-problem strategies than students who only received general education classroom word-problem instruction. Findings suggest students with MD benefit from use of meta-cognitive strategies and explicit schema instruction to solve word problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号