首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
首次利用三次样条配置方法采用直接法求解了一类非线性分数阶延迟微分方程初值问题,并给出了方法的局部截断误差和若干数值算例.数值结果表明方法求解分数阶延迟微分方程初值问题是非常有效的,结果对于未来研究分数阶延迟微分方程的数值方法具有重要的意义.  相似文献   

2.
李宝凤 《数学杂志》2015,35(6):1353-1362
本文研究了一类变系数分数阶微分方程的数值解法问题. 利用Cheyshev小波推导出的分数阶微分方程的算子矩阵把分数阶微分方程转换为代数方程组. 同时给出了Cheyshev小波基的收敛性和误差估计表达式, 并给出数值算例说明所提方法的精确性和有效性  相似文献   

3.
In this paper, we state and prove a new formula expressing explicitly the derivatives of shifted Chebyshev polynomials of any degree and for any fractional-order in terms of shifted Chebyshev polynomials themselves. We develop also a direct solution technique for solving the linear multi-order fractional differential equations (FDEs) with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives (described in the Caputo sense) are based on shifted Chebyshev polynomials TL,n(x) with x ∈ (0, L), L > 0 and n is the polynomial degree. We presented a shifted Chebyshev collocation method with shifted Chebyshev–Gauss points used as collocation nodes for solving nonlinear multi-order fractional initial value problems. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.  相似文献   

4.
In this paper, Bernstein operational matrix of fractional derivative of order α in the Caputo sense is derived. We also apply this matrix to the collocation method for solving multi-order fractional differential equations. The numerical results obtained by the present method compares favorably with those obtained by various collocation methods earlier in the literature.  相似文献   

5.
The aim of this article is to present an analytical approximation solution for linear and nonlinear multi-order fractional differential equations (FDEs) by extending the application of the shifted Chebyshev operational matrix. For this purpose, we convert FDE into a counterpart system and then using proposed method to solve the resultant system. Our results in solving four different linear and nonlinear FDE, confirm the accuracy of proposed method.  相似文献   

6.
In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann–Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method are employed to derive a general procedure for forming this matrix. By using the CWs and their operational matrix of fractional order integration and Galerkin method, the problems under consideration are transformed into corresponding nonlinear systems of algebraic equations, which can be simply solved. Moreover, a new technique for computing nonlinear terms in such problems is presented. Convergence of the CWs expansion in one dimension is investigated. Furthermore, the efficiency and accuracy of the proposed method are shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As a useful application, the proposed method is applied to obtain an approximate solution for the fractional order Van der Pol oscillator (VPO) equation.  相似文献   

7.
This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.  相似文献   

8.
In this paper, a collocation spectral numerical algorithm is presented for solving nonlinear systems of fractional partial differential equations subject to different types of conditions. A proposed error analysis investigates the convergence of the mentioned algorithm. Some numerical examples confirm the efficiency and accuracy of the method.  相似文献   

9.
In this study, we present a numerical scheme for solving a class of fractional partial differential equations. First, we introduce psi -Laguerre polynomials like psi-shifted Chebyshev polynomials and employ these newly introduced polynomials for the solution of space-time fractional differential equations. In our approach, we project these polynomials to develop operational matrices of fractional integration. The use of these orthogonal polynomials converts the problem under consideration into a system of algebraic equations. The solution of this system provide us the desired results. The convergence of the proposed method is analyzed. Finally, some illustrative examples are included to observe the validity and applicability of the proposed method.  相似文献   

10.
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature.  相似文献   

11.
This paper presents an accurate numerical method for solving fractional Riccati differential equation (FRDE). The proposed method so called fractional Chebyshev finite difference method (FCheb-FDM). In this technique, we approximate FRDE with a finite dimensional problem. The method is based on the combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The Caputo fractional derivative is replaced by a difference quotient and the integral by a finite sum. By this method the given problem is reduced to a problem for solving a system of algebraic equations, and by solving this system, we obtain the solution of FRDE. Special attention is given to study the convergence analysis and estimate an error upper bound of the obtained approximate formula. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.  相似文献   

12.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

13.
By the use of the Chebyshev series, a direct computational method for solving the higher order nonlinear differential equations has been developed in this paper. This method transforms the nonlinear differential equation into the matrix equation, which corresponds to a system of nonlinear algebraic equations with unknown Chebyshev coefficients, via Chebyshev collocation points. The solution of this system yields the Chebyshev coefficients of the solution function. An algorithm for this nonlinear system is also proposed in this paper. The method is valid for both initial-value and boundary-value problems. Several examples are presented to illustrate the accuracy and effectiveness of the method.  相似文献   

14.
Some regularity properties of the solution of linear multi-term fractional differential equations are derived. Based on these properties, the numerical solution of such equations by piecewise polynomial collocation methods is discussed. The results obtained in this paper extend the results of Pedas and Tamme (2011) [15] where we have assumed that in the fractional differential equation the order of the highest derivative of the unknown function is an integer. In the present paper, we study the attainable order of convergence of spline collocation methods for solving general linear fractional differential equations using Caputo form of the fractional derivatives and show how the convergence rate depends on the choice of the grid and collocation points. Theoretical results are verified by some numerical examples.  相似文献   

15.
杨水平 《计算数学》2017,39(1):98-114
本文利用Jacobi谱配置方法数值求解了一类分数阶多项延迟微分方程,并证明了该方法是收敛的,通过若干数值算例验证了相应的理论结果,结果表明Jacobi谱配置方法求解这类方程是非常高效的,同时也为这类分数阶延迟微分方程的数值求解提供了新的选择,对分数阶泛函方程的数值方法的研究有一定的指导意义.  相似文献   

16.
胡行华  秦艳杰 《计算数学》2023,45(1):109-129
本文基于现有的切比雪夫神经网络,提出了一种利用遗传算法优化切比雪夫神经网络求解分数阶Bagley-Torvik方程数值解的新方法,结合多点处的泰勒公式原理,给出数值解的一般形式,将原问题转化为求解无约束最小化问题.与现有数值方法的数值结果进行比较表明了本文方法的可行性和有效性,为分数阶微分方程中类似问题的求解提供了新的思路.  相似文献   

17.
A general formulation is constructed for Jacobi operational matrices of integration, product, and delay on an arbitrary interval. The main purpose of this study is to improve Jacobi operational matrices for solving delay or advanced integro–differential equations. Some theorems are established and utilized to reduce the computational costs. All algorithms can be used for both linear and nonlinear Fredholm and Volterra integro-differential equations with delay. An error estimator is introduced to approximate the absolute error when the exact solution of a given problem is not available. The error of the proposed method is less compared to other common methods such as the Taylor collocation, Chebyshev collocation, hybrid Euler–Taylor matrix, and Boubaker collocation methods. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.  相似文献   

18.
A moving collocation method is proposed and implemented to solve time fractional differential equations. The method is derived by writing the fractional differential equation into a form of time difference equation. The method is stable and has a third-order convergence in space and first-order convergence in time for either linear or nonlinear equations. In addition, the method is used to simulate the blowup in the nonlinear equations.  相似文献   

19.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

20.
A new explicit formula for the integrals of shifted Chebyshev polynomials of any degree for any fractional-order in terms of shifted Chebyshev polynomials themselves is derived. A fast and accurate algorithm is developed for the solution of linear multi-order fractional differential equations (FDEs) by considering their integrated forms. The shifted Chebyshev spectral tau (SCT) method based on the integrals of shifted Chebyshev polynomials is applied to construct the numerical solution for such problems. The method is then tested on examples. It is shown that the SCT yields better results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号