首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

2.
3.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

4.
In this paper we show that a fractional adaptive controller based on high gain output feedback can always be found to stabilize any given linear, time-invariant, minimum phase, siso systems of relative degree one. We generalize the stability theorem of integer order controllers to the fractional order case, and we introduce a new tuning parameter for the performance behaviour of the controlled plant. A simulation example is given to illustrate the effectiveness of the proposed algorithm.  相似文献   

5.
This study considers the problem of control and synchronization between fractional‐order and integer‐order, N‐components reaction‐diffusion systems with nonidentical coefficients and different nonlinear parts. The control scheme is designed using the Lyapunov direct method. The results are exemplified by two significant biochemical models, namely, the fractional‐order Lengyel‐Epstein model and the Gray‐Scott model. To illustrate the effectiveness of the proposed scheme, numerical simulations are performed in one and two space dimensions using Homotopy Analysis Method (HAM).  相似文献   

6.
This article deals with the problem of control of canonical non‐integer‐order dynamical systems. We design a simple dynamical fractional‐order integral sliding manifold with desired stability and convergence properties. The main feature of the proposed dynamical sliding surface is transferring the sign function in the control input to the first derivative of the control signal. Therefore, the resulted control input is smooth and without any discontinuity. So, the harmful chattering, which is an inherent characteristic of the traditional sliding modes, is avoided. We use the fractional Lyapunov stability theory to derive a sliding control law to force the system trajectories to reach the sliding manifold and remain on it forever. A nonsmooth positive definite function is applied to prove the existence of the sliding motion in a given finite time. Some computer simulations are presented to show the efficient performance of the proposed chattering‐free fractional‐order sliding mode controller. © 2015 Wiley Periodicals, Inc. Complexity 21: 224–233, 2016  相似文献   

7.
The dynamics of variable-length tethers are studied using a flexible multibody dynamics method. The governing equations of the tethers are derived using a new, hybrid Eulerian and Lagrangian framework, by which the mass flow at a boundary of a tether and the length variation of a tether element are accounted for. The variable-length tether element based on the absolute nodal coordinate formulation is developed to simulate the deployment of satellite tethers. The coupled dynamic equations of tethers and satellites are obtained using the Lagrangian multiplier method. Several tethered satellite systems involving large displacements, rotations, and deformations are numerically simulated, where the tethers are released from several meters to about 1 km. A control strategy is proposed to avoid slackness of the tethers during deployment. The accuracy of the modeling and solution procedures was validated on an elevator model.  相似文献   

8.
The paper is concerned with the problem of the robust stabilization for a class of fractional order linear systems with positive real uncertainty under Riemann–Liouville (RL) derivatives. Firstly, by utilizing the continuous frequency distributed model of the fractional integrator, the fractional order system is expressed as an infinite dimensional integral order system. And via using indirect Lyapunov approach and linear matrix inequality techniques, sufficient condition for robust asymptotic stability of the fractional order systems and design methods of the state feedback controller are presented. Secondly, by using matrixs singular value decomposition technique the static output feedback controller and observer-based controller for asymptotically stabilizing the fractional order systems are derived. Finally, the validity of the proposed methods are demonstrated by numerical examples.  相似文献   

9.
This paper proposes a novel fractional-order sliding mode approach for stabilization and synchronization of a class of fractional-order chaotic systems. Based on the fractional calculus a stable integral type fractional-order sliding surface is introduced. Using the fractional Lyapunov stability theorem, a single sliding mode control law is proposed to ensure the existence of the sliding motion in finite time. The proposed control scheme is applied to stabilize/synchronize a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. Some numerical simulations are performed to confirm the theoretical results of the paper. It is worth noticing that the proposed fractional-order sliding mode controller can be applied to control a broad range of fractional-order dynamical systems.  相似文献   

10.
Networked Control Systems (NCS) are of great interest in many industries because of their convenience in data sharing and manipulation remotely. However, there are several problems along with NCS itself due to the uncertainties in network communication. One issue inherent to NCS is the network-induced delays which may deteriorate the performance and may even cause instability of the system. Therefore a controller which can make the plant stable at large values of delay is always desirable in NCS systems. Our past work on Optimal Fractional Order Proportional Integral (OFOPI) controller showed that fractional order PI controllers have larger jitter margin (maximum value of delay for which system is stable) for lag-dominated systems when compared to traditional Proportional Integral Derivative (PID) controllers, whereas integer order PID controllers have larger jitter margin for delay-dominated systems. This paper aims at the design process of a tele-presence controller based on OFOPI tuning rules. To illustrate this, an extensive experimental study on the real-time Smart Wheel networked speed control system is performed using hardware-in-the-loop control. The real-time random delay in the world wide network is collected by pinging different locations, and is considered as the delay in our simulation and experimental systems. Comparisons are made with existing integer order PID controller. It is found that the proposed OFOPI controller is a promising controller and has faster response time than the traditional integer order PID controllers. Since the plant into consideration viz. the Smart Wheel is a delay-dominated system, it is verified that PID achieves larger jitter margin as compared to OFOPI tuning rules. Simulation results and real-time experiments showing comparisons between OFOPI and OPID tuning rules prove the significance of this method in NCS.  相似文献   

11.
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as “M-curve”. This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller’s effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.  相似文献   

12.
An orbital tether system, including a satellite (a rigid body), an elastic ponderable tether and a terminal load, is investigated. A mathematical model is obtained using Lagrange's equation of the second kind, which enables the plane translational motion of the centres of mass of the elements of the system and the rotational motion of the satellite and the tether to be investigated. It is shown that the equations of motion for the new independent variable, that is, the true anomaly angle, obtained on the assumption that the motion of the centre of mass of the system is independent of the relative motion of its elements, are an extension of the known mathematical models. The effect of the elasticity of the tether on the angular oscillations of the tether and the satellite is investigated. The model constructed can be used both to analyse of the deployment of a tether system as well as to investigate of the combined behaviour of a satellite and a tether about the natural centres of mass.  相似文献   

13.
A novel delayed fractional-order gene regulatory network model is proposed in this paper. Firstly, the sum of delays is chosen as the bifurcation parameter, the conditions of the existence for the Hopf bifurcation are obtained by analyzing the associated characteristic equation. Then, it is the first time that a hybrid controller is designed to control the Hopf bifurcation for the proposed network. It is demonstrated that both fractional order and feedback gain can effectively control the dynamics of such network, the stability domain can be extended under the small fractional order or feedback gain. The controller is enough to delay the onset of the Hopf bifurcation and achieve some desirable dynamical behaviors by changing the appropriate order or feedback gain. Finally, numerical simulations are employed to justify the validity of our theoretical analysis.  相似文献   

14.
Fractional order dynamics and chaotics systems have been recently combined, yielding interesting behaviours. In this paper, a novel integer order hyperchaotic system is considered. Then, a fractional order hyperchaotic representation of said system is proposed using a natural fractionalization. Two different linear control methodologies to deal with the complexity which introduce such systems are proposed. Those methods are able to modify the hyperchaotic behaviour of the system and force it to move towards a fixed point; i.e. steady state. These approaches give a general framework for taming such complex systems using simple linear controllers. The main tools for analysing the controlled system are Matignon stability criterion and RouthHurwitz test. Using a reliable numerical simulation, the designed system is simulated to verify the theoretical analysis.  相似文献   

15.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

16.
This paper deals with the design of fractional PID controller for integer and fractional plants. A new analytic method is proposed, the developments are based on the expansion of the control loop signals as well as a chosen reference model input and output over a piecewise orthogonal functions, namely, Block pulse, Walsh and Haar wavelets. The generalized operational matrices of differentiation related to these bases which are fitting the Riemann–Liouville definition accurately are used to replace the fractional differential calculus by an algebraic one easier to solve. Thereafter, the controller tuning is elaborated simply with a matrix manipulation manner. At first, a least square is drawn to find only the controller gains, then a nonlinear function defined as a matrix norm is minimized to optimize the whole parameters. A variety of examples covering both integer and fractional systems and reference models are presented to show the validity of the technique.  相似文献   

17.
In this paper we present a fractional order Chua’s circuit that behaves chaotically based on the use of a fractional order low pass filter. Next, an integer order robust observer will be designed to synchronize the fractional order Chua’s circuit as well as integer order Chua’s circuit with unknown nonlinearity. This method consists in designing a Luenberger like observer appended with an estimator of the unknown nonlinear function. The estimator assumes that the nonlinear function is slowly varying and that the observer converges quickly and uses the backward difference formula to approximate the state derivative. The efficiency of the proposed method is confirmed using numerical simulations.  相似文献   

18.
A novel type of control strategy combining the fractional calculus with terminal sliding mode control called fractional terminal sliding mode control is introduced for a class of dynamical systems subject to uncertainties. A fractional-order switching manifold is proposed and the corresponding control law is formulated based on the Lyapunov stability theory to guarantee the sliding condition. The proposed fractional-order terminal sliding mode controller ensures the finite time stability of the closed-loop system. Finally, numerical simulation results are presented and compared to illustrate the effectiveness of the proposed method.  相似文献   

19.
This article deals with the fractional‐order modeling of a complex four‐dimensional energy supply‐demand system (FOESDS). First, the fractional calculus techniques are adopted to describe the dynamics of the energy supply‐demand system. Then the complex behavior of the proposed fractional‐order FOESDS is studied using numerical simulations. It is shown that the FOESDS can exhibit stable, chaotic, and unstable states. When it exhibits chaos, the FOESDS's strange attractors are plotted to validate the chaotic behavior of the system. Moreover, we calculate the maximal Lyapunov exponents of the system to confirm the existence of chaos. Accordingly, to stabilize the system, a finite‐time active fractional‐order controller is proposed. The effects of model uncertainties and external disturbances are also taken into account. An estimation of the stabilization time is given. Based on the latest version of the fractional Lyapunov stability theory, the finite‐time stability and robustness of the proposed method are proved. Finally, two illustrative examples are provided to illustrate the usefulness and applicability of the proposed control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 74–86, 2015  相似文献   

20.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号