首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
History and research on proof by contradiction suggests proof by contradiction is difficult for students in a number of ways. Students’ comprehension of already-written proofs by contradiction is one such aspect that has received relatively little attention. Applying the cognitive lens of Action-Process-Object-Schema (APOS) Theory to proof by contradiction, we constructed and tested a cognitive model that describes how a student might construct the concept ‘proof by contradiction’ in an introduction to proof course. Data for this study was collected from students in a series of five teaching interventions focused on proof by contradiction. This paper will report on two participants as case studies to illustrate that our cognitive trajectory for proof by contradiction is a useful model for describing how students may come to understand the proof method.  相似文献   

3.
Combinatorics is an area of mathematics with accessible, rich problems and applications in a variety of fields. Combinatorial proof is an important topic within combinatorics that has received relatively little attention within the mathematics education community, and there is much to investigate about how students reason about and engage with combinatorial proof. In this paper, we use Harel and Sowder’s (1998) proof schemes to investigate ways that students may characterize combinatorial proofs as different from other types of proof. We gave five upper-division mathematics students combinatorial-proof tasks and asked them to reflect on their activity and combinatorial proof more generally. We found that the students used several of Harel and Sowder’s proof schemes to characterize combinatorial proof, and we discuss whether and how other proof schemes may emerge for students engaging in combinatorial proof. We conclude by discussing implications and avenues for future research.  相似文献   

4.
This article describes a study of backgrounds, beliefs, and attitudes of teachers about proofs. Thirty preservice elementary teachers enrolled in a mathematics content course and 21 secondary mathematics teachers in an abstract algebra course were surveyed. The study explored four issues: preservice teachers' experiences/exposure to proof, their beliefs about what constitutes a proof and the role of proof in mathematics, and their beliefs about when proof should be introduced in grades K-12. Results of the survey are described as a means for discussing the backgrounds and beliefs future teachers hold with regard to teaching proofs in their own classrooms. Finally, a short collection of sample explorations and questions, which could be used to encourage the thinking and writing of proofs in grades K-12, is provided. One of these questions was posed to 215 secondary students; examples of their reasoning and a discussion of the various techniques employed by the students are included.  相似文献   

5.
Frequently, in the US students’ work with proofs is largely concentrated to the domain of high school geometry, thus providing students with a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof in mathematics, there is a lack of studies addressing how to integrate proof into other mathematical domains. In this paper, we discuss a teaching experiment designed to integrate algebra and proof in the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn not only about proof in a context other than geometry, but also about aspects of algebra. Results from the experiment indicate that students meaningfully learned about aspects of both algebra and proof in that they produced algebraic proofs involving multiple variables, based on conjectures they themselves generated.  相似文献   

6.
Proving and refuting mathematical claims constitute a significant element in the development of deductive thinking. These issues are mainly studied during geometry lessons and very little (if at all) in lessons of other mathematical disciplines. This study deals with high school students’ perceptions of proofs in the geometry. The study explores whether students know when to use a deductive proof and when an example is sufficient for proving or refuting geometrical claims. The findings indicate that in cases of simple claims, the students corroborate them by using a deductive proof. However, when the claim is more complex, the students tend to present both a proof and an example. Moreover, they are unsure whether using an example can constitute a method for proving a mathematical claim, believing that in mathematics everything must be proven. They believe that examples are used merely for illustration purposes rather than as a means of convincing. The research conclusions support the need for deepening and developing the students’ distinction between cases where examples are insufficient and cases where an example is sufficient for proving a claim.  相似文献   

7.
In the United States, researchers argue that proof is largely concentrated in the domain of high school geometry, thus providing students a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof, there is a lack of studies addressing how to integrate proof into other mathematical domains. In this article, we discuss a teaching experiment designed to integrate algebra and proof in the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn not only about proof in a context other than geometry but also about aspects of algebra. Results from the experiment indicate that students meaningfully learned about aspects of both algebra and proof in that they produced algebraic proofs involving multiple variables and a single parameter, based on conjectures they themselves generated.  相似文献   

8.
Proof validation is important in school mathematics because it can provide a basis upon which to critique mathematical arguments. While there has been some previous research on proof validation, the need for studies with school students is pressing. For this paper, we focus on proof validation and modification during secondary school geometry. For that purpose, we employ Lakatos’ notion of local counterexample that rejects a specific step in a proof. By using Toulmin’s framework to analyze data from a task-based questionnaire completed by 32 ninth-grade students in a class in Japan, we identify what attempts the students made in producing local counterexamples to their proofs and modifying their proofs to deal with local counterexamples. We found that student difficulties related to producing diagrams that satisfied the condition of the set proof problem and to generating acceptable warrants for claims. The classroom use of tasks that entail student discovery of local counterexamples may help to improve students’ learning of proof and proving.  相似文献   

9.
This study examined 14 pre-service secondary mathematics teachers’ productions and their evaluations of self-constructed and student-generated arguments in the domains of algebra, geometry, and number theory. Pre-service secondary mathematics teachers’ (PSMTs) evaluations of their own arguments indicate if they considered self-productions as proofs from a learner perspective. Similarly, PSMTs’ evaluations of student-generated arguments indicate if they decided given students’ productions could be counted as proofs from a teacher perspective. Our results show that the majority of PSMTs suspected that their invalid productions did not qualify as proofs. Furthermore, the PSMTs who were confident with their work and claimed that they had constructed a proof were more likely to make a correct judgment on four of the six student-generated arguments. We discuss implications of these findings for supporting PSMTs’ learning of proof and future research on the construction-evaluation activity.  相似文献   

10.
Proof and proving are important components of school mathematics and have multiple functions in mathematical practice. Among these functions of proof, this paper focuses on the discovery function that refers to invention of a new statement or conjecture by reflecting on or utilizing a constructed proof. Based on two cases in which eighth and ninth graders engaged in proofs and refutations, we demonstrate that facing a counterexample of a primitive statement can become a starting point of students’ activity for discovery, and that a proof of the primitive statement can function as a useful tool for inventing a new conjecture that holds for the counterexample. An implication for developing tasks by which students can experience this discovery function is mentioned.  相似文献   

11.
This case study investigated how secondary preservice mathematics teachers perceive the need for and the benefits of formal proof when given geometric tasks in the context of dynamic geometry software. Results indicate that preservice teachers are concerned that after using dynamic software high school students will not see the need for proofs. The participants stated that multiple examples are not equivalent to a proof but, nonetheless, questioned the value of formal proof for high school students. Finally, preservice teachers found the greatest value of geometric software to be in helping students understand key relationships within a problem or theorem. Participants also tended to study a problem more deeply with the software than without it.  相似文献   

12.
This paper is a case study of the teaching of an undergraduate abstract algebra course with a particular focus on the manner in which the students presented proofs and the class engaged in a subsequent discussion of those proofs that included validating the work. This study describes norms for classroom work that include a set of norms that the presenter of a proof was responsible for enacting, including only using previously agreed upon results, as well as a separate set that the audience was to enact related to developing their understanding of the presented proof and validating the work. The study suggests that the students developed a sense of communal and individual responsibility for contributing to growing the body of mathematical knowledge known by the class, with an implied responsibility for knowing the already developed mathematics. Moreover, the behaviors that norms prompted the students to engage were those that literature suggests leads to increased comprehension of proofs.  相似文献   

13.
Reasoning and proof play an important role in the mathematics classroom. However, prerequisites for the learning of mathematical reasoning and proof, such as logical competence or the understanding of concepts and proofs, are rarely taught explicitly. In an empirical survey with 106 students in grade 8 we investigated students' declarative and methodological knowledge related to some of these prerequisites. The results show that there are certain deficits which make it difficult for students to learn reasoning and proof.  相似文献   

14.
Dongwon Kim  Mi-Kyung Ju 《ZDM》2012,44(2):149-160
The purpose of this study is to explore how students changes through learning to construct mathematical proofs in an inquiry-based middle school geometry class in Korea. Although proof has long been considered as one of the most important aspects of mathematics education, it is well-known that it is one of the most difficult areas of school mathematics for students. The geometry inquiry classroom (GIC) is an experimental class designed to teach geometry, especially focusing on teaching proof, based on students’ own inquiry. Based on a 2-year participant observation in the GIC, this study was conducted to address the following research question: how has students’ practice of mathematical proof been changed through their participation in the GIC? The in-depth analysis of the classroom discourse identified three stages through which the students’ practice of mathematical proof was transformed in the GIC: ‘emergent understanding of proof’, ‘proof learning as a goal-oriented activity’, ‘experiencing proof as the practice of mathematics’. The study found that as learning evolved through these stages, so the mathematics teacher’s role shifted from being an instructor to a mediator of communication. Most importantly, this research showed that the GIC has created a learning environment where students develop their competence in constructing meaningful mathematical proof and grow to be ‘a human who proves’, ultimately ‘a person who playfully engages with mathematics’.  相似文献   

15.
16.
Gila Hanna  Ed Barbeau 《ZDM》2008,40(3):345-353
Yehuda Rav’s inspiring paper “Why do we prove theorems?” published in Philosophia Mathematica (1999, 7, pp. 5–41) has interesting implications for mathematics education. We examine Rav’s central ideas on proof—that proofs convey important elements of mathematics such as strategies and methods, that it is “proofs rather than theorems that are the bearers of mathematical knowledge”and thus that proofs should be the primary focus of mathematical interestand then discuss their significance for mathematics education in general and for the teaching of proof in particular.  相似文献   

17.
Representation determines how we can reason about a specific problem. Sometimes one representation helps us to find a proof more easily than others. Most current automated reasoning tools focus on reasoning within one representation. There is, therefore, a need for the development of better tools to mechanise and automate formal and logically sound changes of representation. In this paper we look at examples of representational transformations in discrete mathematics, and show how we have used tools from Isabelle’s Transfer package to automate the use of these transformations in proofs. We give an overview of a general theory of transformations that we consider appropriate for thinking about the matter, and we explain how it relates to the Transfer package. We show a few reasoning tactics we developed in Isabelle to improve the use of transformations, including the automation of search in the space of representations. We present and analyse some results of the use of these tactics.  相似文献   

18.
While proofs are central to university level mathematics courses, research indicates that some students may complete their degrees with an incomplete picture of what constitutes a proof and how proofs are developed. The paper sets out to review what is known of the student experience of mathematical proof at university level. In particular, some evidence is presented of the conceptions of mathematical proof that recent mathematics graduates bring to their postgraduate course to teach high school mathematics. Such evidence suggests that while the least well-qualified graduates may have the poorest grasp of mathematical proof, the most highly qualified may not necessarily have the richest form of subject matter knowledge needed for the most effective teaching. Some indication of the likely causes of this incomplete student perspective on proof are presented.  相似文献   

19.
During the years they spend in university, many mathematics students develop a very poor conception of mathematics and its teaching. This fact is bad in all cases, but even more in the case of those students who will be mathematics teachers in school. In this paper it is argued that the history of mathematics may be an efficient element to provide students with flexibility, open-mindedness and motivation towards mathematics. The theoretical background of this work relies both on recent research in mathematics education and on papers written by mathematicians of the past. Opinions are supported with examples. One example concerns a historical presentation of ‘definition’; it was developed with mathematics students who will become mathematics teachers. For students oriented to research or to applied mathematics, an example is presented to address the problem of the secondary-tertiary transition.  相似文献   

20.
Mathematical proof has many purposes, one of which is communication of the reasoning behind a mathematical insight. Research on teachers' views of the role that proof plays as mathematical communication has been limited. This study describes how one teacher conceptualized proof communication during two units on proof (coordinate geometry proofs and Euclidean proofs). Based on classroom observations, the teacher's conceptualization of communication in written proofs is recorded in four categories: audience, clarity, organization, and structure. The results indicate differences within all four categories in the way the idea of communication is discussed by the teacher. Implications for future studies include attention to teachers' beliefs about learning mathematics in the process of understanding teachers' conceptions of proof as a means of mathematical communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号