首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the bending behaviors of composite plate with 3-D periodic configuration.A second-order two-scale(SOTS)computational method is designed by means of construction way.First,by 3-D elastic composite plate model,the cell functions which are defined on the reference cell are constructed.Then the effective homogenization parameters of composites are calculated,and the homogenized plate problem on original domain is defined.Based on the Reissner-Mindlin deformation pattern,the homogenization solution is obtained.And then the SOTS’s approximate solution is obtained by the cell functions and the homogenization solution.Second,the approximation of the SOTS’s solution in energy norm is analyzed and the residual of SOTS’s solution for 3-D original in the pointwise sense is investigated.Finally,the procedure of SOTS’s method is given.A set of numerical results are demonstrated for predicting the effective parameters and the displacement and strains of composite plate.It shows that SOTS’s method can capture the 3-D local behaviors caused by3-D micro-structures well.  相似文献   

2.
3.
Manfred H. Ulz 《PAMM》2014,14(1):571-572
Hierarchical two-scale methods are computationally very powerful as there is no direct coupling between the macro- and microscale. Such schemes develop first a microscale model under macroscopic constraints, then the macroscopic constitutive laws are found by averaging over the microscale. The heterogeneous multiscale method (HMM) is a general top-down approach for the design of multiscale algorithms. While this method is mainly used for concurrent coupling schemes in the literature, the proposed methodology also applies to a hierarchical coupling. This contribution discusses a hierarchical two-scale setting based on the heterogeneous multi-scale method for quasi-static problems: the macroscale is treated by continuum mechanics and the finite element method and the microscale is treated by statistical mechanics and molecular dynamics. Our investigation focuses on an optimised coupling of solvers on the macro- and microscale which yields a significant decrease in computational time with no associated loss in accuracy. In particular, the number of time steps used for the molecular dynamics simulation is adjusted at each iteration of the macroscopic solver. A numerical example demonstrates the performance of the model. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The heterogeneous multiscale methods (HMM) is a general framework for the numerical approximation of multiscale problems. It is here developed for ordinary differential equations containing different time scales. Stability and convergence results for the proposed HMM methods are presented together with numerical tests. The analysis covers some existing methods and the new algorithms that are based on higher-order estimates of the effective force by kernels satisfying certain moment conditions and regularity properties. These new methods have superior computational complexity compared to traditional methods for stiff problems with oscillatory solutions.

  相似文献   


5.
Effective properties of composite and porous materials are determined by using an approach based on two-scale asymptotic expansions. Explicit approximate formulas are derived for the effective moduli of composite and porous materials of elongated structures. A numerical method is proposed for finding solutions to cell problems, which are used to determine “exact” effective moduli. Examples are computed for a two-dimensional porous medium with variously shaped pores and various degrees of “elongation.” The effective moduli produced by the explicit approximate formulas prove to be similar to those found by numerically solving cell problems.  相似文献   

6.
In this paper, we shall present a new second-order and two-scale approximate solution of boundary value problems for the linear elasticity systems with quasi-periodic structures by multi-scale analysis. The computation of strain and stress is presented here. This idea can apply to the damage computation of composite materials. Because the computation of the local stress by this method having more precision, it can provide some inspiration for construct optimal design. Finally numerical results show that the method presented in this paper is effective and reliable.  相似文献   

7.
In this paper, we discuss the multiscale analysis and numerical algorithms for the wave equations of second order with rapidly oscillating coefficients. The formal multiscale asymptotic expansions of the solutions for these problems in four specific cases are presented. Higher order corrector methods are constructed and associated explicit convergence rates are obtained in some cases. A multiscale numerical method and a symplectic geometric scheme are introduced. Finally, some numerical results and unsolved problems are presented, and these numerical results support strongly the convergence theorem of this paper.  相似文献   

8.
This paper is concerned with some special additive noises driven stochastic partial differential equations with multiscale parameters. Then, the constraint energy minimizing generalized multiscale finite element method with a novel multiscale spectral representation of the noise is constructed to solve the multiscale models. The corresponding convergence analysis and error estimates are derived, and the effects of noises on the accuracy of the multiscale computation are demonstrated. Some numerical examples are provided to validate our theoretic analysis, and numerical results show the highly efficient computational performance of our method, which is a beneficial attempt to deal with the noises in the complex multiscale stochastic physical system.  相似文献   

9.
A novel second‐order two‐scale (SOTS) analysis method is developed for predicting the transient heat conduction performance of porous materials with periodic configurations in curvilinear coordinates. Under proper coordinate transformations, some non‐periodic porous structures in Cartesian coordinates can be transformed into periodic structures in general curvilinear coordinates, which is our particular interest in this study. The SOTS asymptotic expansion formulas for computing the temperature field of transient heat conduction problem in curvilinear coordinates are constructed, some coordinate transformations are discussed, and the related SOTS formulas are given. The feature of this asymptotic model is that each of the cell functions defined in the periodic cell domain is associated with the macroscopic coordinates and the homogenized material coefficients varies continuously in the macroscopic domain behaving like the functional gradient material. Finally, the corresponding SOTS finite element algorithms are brought forward, and some numerical examples are given in detail. The numerical results demonstrate that the SOTS method proposed in this paper is valid to predict transient heat conduction performance of porous materials with periodicity in curvilinear coordinates. By proper coordinate transformations, the SOTS asymptotic analysis method can be extended to more general non‐periodic porous structures in Cartesian coordinates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we introduce the multiscale cell boundary element method (MsCBE method). The method is obtained by applying the oversampling technique of the MsFEM by Hou and Wu [T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997) 169–189] to the newly developed numerical method, the cell boundary element(CBE) method by the author and his colleagues. The advantage of the MsCBE method is that it preserves flux exactly on arbitrary subdomain without needing the dual mesh. A complete H1 convergence analysis and numerical examples confirming our analysis are presented.  相似文献   

11.
The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh (TT-M) finite element (FE) method to ease the problem caused by strong nonlinearities. The TT-M FE algorithm includes the following main computing steps. First, a nonlinear FE method is applied on a coarse time-mesh τc. Here, the FE method is used for spatial discretization and the implicit second-order θ scheme (containing both implicit Crank-Nicolson and second-order backward difference) is used for temporal discretization. Second, based on the chosen initial iterative value, a linearized FE system on time fine mesh is solved, where some useful coarse numerical solutions are found by Lagrange’s interpolation formula. The analysis for both stability and a priori error estimates is made in detail. Numerical examples are given to demonstrate the validity of the proposed algorithm. Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.  相似文献   

12.
An uncoupled dynamic thermoelastic problem for laminated composite plates has been considered. The hypotheses used take into account the nonlinear distribution of temperature and displacements over the thickness of a laminated plate. On the basis of these hypotheses a quasi-three-dimensional (layerwise) theory is constructed that makes it possible to investigate the internal thermal and stress-strain states, as well as the edge effects of the boundary layer type for laminated plates. Systems of the heat conduction and motion equations are derived using the variational method. The order of the equations depends on the number of layers and terms in expansions of temperature and displacements of each layer. An analytical solution of the dynamic thermoelastic problem is presented for a cross-ply laminated rectangular plate with simply supported edges. The reliability of the results is confirmed by a comparison with the known exact solutions. The results based on the proposed theory can be used for verifying various two-dimensional plate theories when solving the dynamic thermoelastic problems for laminated composite plates.  相似文献   

13.
A two-scale analysis (TSA) method for predicting the heat transfer performance of composite materials with the random distribution of same-scale grains is presented. First the representation of the materials with the random distribution is briefly described. Then the two-scale analysis formulation of heat transfer behavior of the materials with random grain distribution of small periodicity is formally derived by means of construction way for each cell. Finally the numerical result on the heat transfer parameters of composite materials is shown. The numerical result shows that TSA is effective to predict the heat transfer performance of composite materials with random grain distribution.  相似文献   

14.
A two-scale analysis (TSA) method for predicting the heat transfer performance of composite materials with the random distribution of same-scale grains is presented. First the representation of the materials with the random distribution is briefly described. Then the two-scale analysis formulation of heat transfer behavior of the materials with random grain distribution of small periodicity is formally derived by means of  相似文献   

15.
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method [Hou and Wu, J Comp Phys 134 (1997), 169–189] captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method [Engquist and Engquist, Comm Math Sci 1 (2003), 87–132] is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

16.
The defect correction technique, based on the Galerkin finite element method, is analyzed as a procedure to obtain highly accurate numerical solutions to second-order elliptic boundary value problems. The basic solutions, defined over a rectangular region Ω, are computed using continuous piecewise bilinear polynomials on rectangles. These solutions are O(h2) accurate globally in the second-order discrete Sobolev norm. Corrections to these basic solutions are obtained using higher-order piecewise polynomials (Lagrange polynomials or splines) to form defects. An O(h2) improvement is gained on the first correction. The lack of regularity of the discrete problems (beyond the second-order Sobolev norm) makes it impossible to retain this order of improvement, but for problems satisfying certain periodicity conditions, straightforward arbitrary accuracy is obtained, since these problems possess high-order regularity. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
We present an “a posteriori” error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro‐to‐micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space, and the missing macroscopic data are recovered on‐the‐fly using the solutions of corresponding microscopic problems. We propose a new framework that allows to follow the concept of the (single‐scale) dual‐weighted residual method at the macroscopic level in order to derive a posteriori error estimates in quantities of interests for multiscale problems. Local error indicators, derived in the macroscopic domain, can be used for adaptive goal‐oriented mesh refinement. These error indicators rely only on available macroscopic and microscopic solutions. We further provide a detailed analysis of the data approximation error, including the quadrature errors. Numerical experiments confirm the efficiency of the adaptive method and the effectivity of our error estimates in the quantities of interest. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
At present there are many papers, based on multiscale expansion and homogenization theory, to deal with nonlinear problems with microstructure. But there is no systematic method to deal with all of the possible nonlinear partial differential equations since different nonlinear problems gives rise to different multiscale expansions parameters classes. This introduces changes in the consequent process of homogenization. In this paper, a method based on the theory of upper and lower solution is provided. It deals with nonlinear problems by reducing them to a series of linear problems. In addition numerical computations are also presented in the last part of the paper to support our theoretical analysis.  相似文献   

19.
An analysis solution method (ASM) is proposed for analyzing arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystal (QC) media. The extended displacement discontinuity (EDD) boundary integral equations governing three-dimensional (3D) crack problems are transferred to simplified integral-differential forms by introducing some complex quantities. The proposed ASM is based on the analogy between these EDD boundary equations for 3D planar cracks problems of 2D hexagonal QCs and those in isotropic thermoelastic materials. Mixed model crack problems under combined normal, tangential and thermal loadings are considered in 2D hexagonal QC media. By virtue of ASM, the solutions to 3D planar crack problems under various types of loadings for 2D hexagonal QCs are formulated through comparison to the corresponding solutions of isotropic thermoelastic materials which have been studied intensively and extensively. As an application, analytical solutions of a penny-shaped crack subjected uniform distributed combined loadings are obtained. Especially, the analytical solutions to a penny-shaped crack subjected to the anti-symmetric uniform thermal loading are first derived for 2D hexagonal QCs. Numerical solutions obtained by EDD boundary element method provide a way to verify the validity of the presented formulation. The influences of phonon-phason coupling effect on fracture parameters of 2D hexagonal QCs are assessed.  相似文献   

20.
In this article, we present a new multiscale discontinuous Petrov–Galerkin method (MsDPGM) for multiscale elliptic problems. This method utilizes the classical oversampling multiscale basis in the framework of a Petrov–Galerkin version of the discontinuous Galerkin method, allowing us to better cope with multiscale features in the solution. MsDPGM takes advantage of the multiscale Petrov–Galerkin method (MsPGM) and the discontinuous Galerkin method (DGM). It can eliminate the resonance error completely and decrease the computational costs of assembling the stiffness matrix, thus, allowing for more efficient solution algorithms. On the basis of a new H2 norm error estimate between the multiscale solution and the homogenized solution with the first‐order corrector, we give a detailed convergence analysis of the MsDPGM under the assumption of periodic oscillating coefficients. We also investigate a multiscale discontinuous Galerkin method (MsDGM) whose bilinear form is the same as that of the DGM but the approximation space is constructed from the classical oversampling multiscale basis functions. This method has not been analyzed theoretically or numerically in the literature yet. Numerical experiments are carried out on the multiscale elliptic problems with periodic and randomly generated log‐normal coefficients. Their results demonstrate the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号