首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A TEA CO2 laser (350 mJ–1.5 J, 10.6 μm, 200 ns, 10 Hz) was focused onto a metal sub-target under He as host gas at 1 atmospheric pressure with a small amount of impurity gas, such as water and ethanol vapors. It was found that the TEA CO2 laser with the help of the metal sub-target is favorable for generating a strong, large volume helium gas breakdown plasma at 1 atmospheric pressure, in which the helium metastable-excited state was then produced overwhelmingly. While the metal sub-target itself was never ablated. The helium metastable-excited state produced after the strong helium gas breakdown plasma was considered to play an important role in exciting the atoms. This was confirmed by the specific characteristics of the detected H emission, namely the strong intensity with low background, narrow spectral width, and the long lifetime. This technique can be used for gas and solid samples analysis. For nonmetal solid analysis, a metal mesh was introduced in front of the nonmetal sample surface to help initiation of the helium gas breakdown plasma. For metal sample, analysis can be carried out by combining the TEA CO2 laser and an Nd–YAG laser where the Nd–YAG laser is used to ablate the metal sample. The ablated atoms from the metal sample are then sent into the region of helium gas breakdown plasma induced by the TEA CO2 laser to be excited through the helium metastable-excited state. This technique can be extended to the analysis of other elements, not limited only to hydrogen, such as halogens.  相似文献   

2.
An intensive multi-disciplinary research effort is underway at Wayne State University to synthesize and characterize magnetic nanoparticles in a biocompatible matrix for biomedical applications. The particular system being studied consists of 3–10 nm γ-Fe2O3 nanoparticles in an alginate matrix, which is being studied for applications in targeted drug delivery, as a magnetic-resonance imaging (MRI) contrast agent, and for hyperthermic treatments of malignant tumors. In the present work we report on our efforts to determine if laser-induced breakdown spectroscopy (LIBS) can offer a more accurate and substantially faster determination of iron content in such nanoparticle-containing materials than competing technologies such as inductively-coupled plasma (ICP). Standardized samples of -Fe2O3 nanoparticles (5–25 nm diameter) and silver micropowder (2–3.5 μm diameter) were created with thirteen precisely known concentrations and pressed hydraulically to create solid “pellets” for LIBS analysis. The ratio of the intensity of an Fe(I) emission line at 371.994 nm to that of an Ag(I) line at 328.069 nm was used to create a calibration curve exhibiting an exponential dependence on Fe mass fraction. Using this curve, an “unknown” γ-Fe2O3/alginate/silver pellet was tested, leading to a measurement of the mass fraction of Fe in the nanoparticle/alginate matrix of 51 ± 3 wt.%, which is in very good agreement with expectations and previous determinations of its iron concentration.  相似文献   

3.
The concentrations of C2F4Cl2 and CCl4, CHF3 and C2F4Cl2, and O2 have been measured in a dc gas discharge by wavelength modulation laser absorption spectroscopy of excited chlorine, fluorine and oxygen, respectively, applying semiconductor diode lasers. Argon and helium at reduced pressure were used as plasma gases. Preliminary 3σ detection limits of 0.6–1.5 ppb for chlorine compounds by absorption of the Cl 837.60 nm line, about 70 ppb of fluorine compounds by the F 739.87 nm line, and about 20 ppb oxygen molecules by the O 777.18 nm line were found.  相似文献   

4.
Two polycatenar materials composed of a four-aromatic-ring core with a perfluorinated moiety attached in one terminal position through either butylene- or pentylene spacer groups, and three tetradecyloxy chains at the other end (abbreviated as 14PC4F and 14PC5F), were investigated to study the effect of pressure on the phase transition behaviour. A polarizing optical microscope equipped with a high pressure optical hot stage, was used for the purpose. The T vs. P phase diagrams of 14PC4F and 14PC5F were constructed in the pressure region up to 100 MPa. 14PC4F showed the stable crystal (Cr1)-columnar tetragonal (Coltet)-smectic A (SmA)-columnar hexagonal (Colh)-isoropic liquid (I) phase transition sequence under all pressures. 14PC5F exhibited the phase sequence metastable crystal (Cr2)-cubic (Cub)-Coltet-SmA-I in a melt-cooled sample on heating under pressure. But when the melt-cooled Cr2 sample was annealed at 52-54°C for 2-3 h, the stable crystal (Cr1) was formed slowly, giving a stable Cr1-Cub-Coltet-SmA-I phase sequence. The temperature region of the stable cubic phase broadened with increasing pressure. Furthermore a new mesophase of 14PC5F was pressure-induced between the I and SmA phases on cooling at pressures above about 16 MPa. Since the monotropic mesophase exhibited a texture very similar to that of the high temperature Colh phase of 14PC4F with planar orientation, the new phase was assigned at a high temperature columnar hexagonal phase of 14PC5F.  相似文献   

5.
Combined Laser Induced Ignition and Plasma Spectroscopy (LI2PS) has the potential to give the exact local composition of a mixture at the ignition point and at the ignition time. However, as different laser energies are required to ignite a particular mixture as function of space, the typical approach using two power meters to calibrate the plasma spectroscopy measurement is not well suited. Furthermore, LI2PS requires single shot measurements and therefore high accuracy. In this paper, a novel calibration scheme is presented for application of Laser Induced Plasma Spectroscopy (LIPS) to gaseous analyses. Numerical simulations of air spectra are used to show that species emission can be used directly from the broadband spectra to determine the plasma conditions. The ratio of nitrogen emission around 744 nm and around 870 nm is found to be a sensitive indication of temperature in the emission ranging from 700 to 890 nm. Comparisons with experimental spectra show identical tendencies and validate the findings of the simulations. This approach is used in a partially-premixed hydrogen–air burner. First, helium is used instead of hydrogen. After an explanation of timing issue related to LIPS, it is shown that the calibration required depends only on nitrogen excitation and nitrogen–hydrogen ratio, without the need to know the deposited power. Measurements of the fuel distribution as function of injection momentum and spatial localization are reported. To illustrate the use of such a single shot approach, combined laser ignition and plasma spectroscopy is proposed. In this case, the calibration is based on hydrogen excitation and hydrogen–oxygen and hydrogen–nitrogen ratio. Results obtained with LI2PS show that ignition is successful only for high power and relatively high hydrogen concentration compared to the local mean. It is expected that LI2PS will become an important tool when dealing with partially-premixed or diffusion flame ignition.  相似文献   

6.
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

7.
A determination method of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) by a barrier discharge radiofrequency helium plasma-atomic emission spectroscopy was developed. A borosilicate glass was wrapped by two copper film electrodes, one of which was earthed, and the other was supplied with a radiofrequency high voltage (98 kHz, 3.2 kV), resulting in a discharge inside of the tube. An optical emission from the discharge tube was introduced to a charge-coupled device (CCD)-spectrometer through an optical fiber, and was monitored in the wavelength range of 730-960 nm. The emission lines of F (733.2 nm, 739.9 nm), Cl (833.3 nm, 837.6 nm, 858.6 nm, 894.8 nm, 912.1 nm, etc.), Br (827.2 nm, 882.5 nm, 889.8 nm, 926.5 nm, etc.) and I (905.8 nm) were observed. The linearity of the calibration was determined for F and Cl over the range of 1-10 microg, and for Br of 0.1-1 microg. The relative emission intensity was in the order of Br > I > Cl >F.  相似文献   

8.
The orientation of E7 liquid crystal (LC) confined within 200 nm diameter cylindrical cavities of Anodisc membranes are investigated by FTIR dichroism techniques. The cavity walls of the confining pores were chemically modified with different length perfluorinated carboxylic acids (PCAs, C n F2n+1COOH, n = 3, 4, 5, 6) at 1, 3 and 5 mM concentrations. From the FTIR spectra of PCA-treated alumina Anodsic membranes, we found salt formation between the -COOH group of the PCAs and the Anodisc membranes. From the FTIR spectra of LC-filled Anodisc membranes, we found an abrupt alignment direction change, from parallel to perpendicular, of the LC molecules along the long axis of the cavities between n = 4 and n = 5 for the 1 mM concentration of PCA. However, for the 5 mM concentration of PCA, the parallel-to-perpendicular alignment direction of LC molecules changed between n = 3 and n = 4. These LC orientation changes for PCA-treated Anodisc membranes occurred at shorter length than for hydrocarbon carboxylic acid (HCA, C n H2n+1COOH)-treated Anodisc membranes. This change may be caused by the lower surface energy of the -(CF2) n CF3 chain of PCA than that of the -(CH2) n CH3 chain of HCA.  相似文献   

9.
Single-pulse laser-induced breakdown spectroscopy has been performed on the surface of a bulk water sample in an air, argon, and nitrogen gas environment to investigate emissions from hydrogen-containing molecules. A microplasma was formed at the gas/liquid interface by focusing a Nd:YAG laser beam operating at 1064 nm onto the surface of an ultra-pure water sample. A broadband Echelle spectrometer with a time-gated intensified charge-coupled device was used to analyze the plasma at various delay times (1.0–40.0 μs) and for incident laser pulse energies ranging from 20–200 mJ. In this configuration, the dominant atomic spectral features at short delay times are the hydrogen H-alpha and H-beta emission lines at 656 and 486 nm, respectively, as well as emissions from atomic oxygen liberated from the water and air and nitrogen emission lines from the air bath gas. For delay times exceeding approximately 8 μs the emission from molecular species (particularly OH and NH) created after the ablation process dominates the spectrum. Molecular emissions are found to be much less sensitive to variations in pulse energy and exhibit a temporal decay an order of magnitude slower than the atomic emission. The dependence of both atomic hydrogen and OH emission on the bath gas above the surface of the water was studied by performing the experiment at standard pressure in an atmospheric purge box. Electron densities calculated from the Stark broadening of the H-beta and H-gamma lines and plasma excitation temperatures calculated from the ratio of H-beta to H-gamma emission were measured for ablation in the three bath gases.  相似文献   

10.
Liao W  Shang Q  Yu G  Li D 《Talanta》2002,57(6):6184-1092
Phase behavior of the extraction system, Cyanex 923–heptane/H2SO4–H2O has been studied. The third phase appeared at different aqueous H2SO4 concentration with varying initial Cyanex 923 concentration and temperature affects its appearance. Almost all of H2SO4 and H2O are extracted into the middle phase. The H2SO4 concentration in the third phase increases with the increasing aqueous acid concentration (CH2SO4,b) while the water content first increases and then reaches a constant value at CH2SO4,b=11.3 mol l−1. In the region of CH2SO4,b higher than 5.2 mol l−1, the composition of the middle phase is only related to the equilibrium concentration of H2SO4 in the bottom phase. H2SO4 and H2O are transferred into the middle phase mainly by their coordination with Cyanex 923 when CH2SO4,b is less than 11.3 mol l−1. When CH2SO4,b is higher than 11.3 mol l−1, excess H2SO4 is solubilized into the polar layer of the aggregates. In the region considered, the extracted complex changes from C923 · H2SO4 to C923 · H2SO4 · H2O and then to C923 · (H2SO4)2 · H2O.  相似文献   

11.
This article is the seventh part of a series of papers discussing the spectral interferences of rare earth elements (REEs) in ICP-AES. Radial viewing 27.12 MHz inductively coupled plasma atomic emission spectrometry (ICP-AES) was used in the determination of scandium, yttrium and rare earth elements in Tb2O3, Dy2O3, Ho2O3 and Tm2O3 as “pure” rare earth matrices. The quantification of the interferences in terms of Q-values for line interference QI(a) and wing background interference QWλa) were used in accordance with Boumans and Vrakking [Spectrochim. Acta Part B 43 (1988) 69]. The “best” analysis lines from point of view of spectral interferences were selected. The true detection limits by using the “best” analysis lines were calculated.  相似文献   

12.
The intensity distribution of the Cr–I 428.97 nm resonant and 520.60 nm non-resonant lines was studied as a function of the distance from the anode in a low pressure DC-GD fitted with a Cr metal cathode and operated in various gas atmospheres, including helium (P = 4 mbar), ambient air and water vapor (P = 0.8 mbar). In the helium and ambient air atmospheres, the intensity peaks occurred in the near cathode region (cathode glow) in accordance with the literature. When operated in water vapor, however, the Cr–I 428.97 nm resonant line disappeared, whereas the intensity of the non-resonant 520.60 nm line was enhanced. This result may be attributed to resonant energy transfer collisions taking place between OH radicals excited to the first vibrational level and Cr*428 atoms excited to the z7P0 upper level of the 428.97 nm transition. The similar gas phase composition encountered with a DC electrolyte cathode atmospheric pressure glow discharge (ELCAD) and the Cr metal cathode GD operating under a low pressure of water vapor suggests that the zero intensity of the Cr resonance lines (428.97 nm, 360.53 nm) produced in the ELCAD may be attributed to similar energy transfer processes. Our results show that the intensity of the Cr–I 520.60 nm line can be used for analytical purposes in the ELCAD.  相似文献   

13.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

14.
Six banana-shaped compounds with a central core based on a 4,6-dichloro-1,3-phenylene group were synthesized by varying the terminal chains (R = OC10H21 or OC11H21) and the lateral substituents (X = H, F or Cl). Their mesophases were characterized by a combination of differential scanning calorimetry, polarizing optical microscopy, triangular wave method, and X-ray diffractometry. Mesomorphic properties of the banana-shaped mesogens with an olefinic group (R = OC11H21) as a terminal chain are sensitive to lateral halogen substituents as much as those of the analogues with a saturated group (R = OC10H21). The compounds with X = F showed an antiferroelectric switchable smectic phase, which has been designated a B2 phase. The compounds without a lateral halogen substituent only formed a nematic phase, while the compounds with X = Cl did not exhibit a mesophase in the melt.  相似文献   

15.
《Microchemical Journal》2008,88(2):175-179
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

16.
New polymer nematic nanocomposites are prepared containing 1.43-4.64 wt % of silver nanoparticles whose mean dimensions are 2-4 nm. According to 2H NMR spectroscopic measurements, on increasing the content of metallic nanoparticles, the orientational order parameter Szz of the nematic phase shown by the nanocomposites increases.  相似文献   

17.
In alkaline solution (1 M NaOH) irradiation (λir=266 nm) of both TlOH and Sn(OH)3 leads to the formation of hydrated electron and oxidized complex in the primary photochemical step. In both cases nascent hydrated electrons react with the ground-state hydroxometalates to form the corresponding reduced compounds. The main reaction of these latter species is recombination (synproportionation) with the oxidized complexes, significantly diminishing the efficiency of the overall light-induced oxidation of TlOH and Sn(OH)3.  相似文献   

18.
The emission characteristics of nickel ionic lines in low-pressure laser-induced plasmas are investigated when argon, krypton, nitrogen, or air gas was employed as the plasma gas. The spectrum patterns and the relative intensities of the ionic lines are measured with and without a blind cylinder surrounding the sample surface to separate the detected emission area into two portions roughly: an initial breakdown zone and an expansion zone of the plasma. Their emission intensities are strongly dependent on both the kind and the pressure of the plasma gas. Different major ionic lines are observed in the argon and the krypton plasmas: for example, the Ni II 230.010-nm line (8.25 eV) for argon and the Ni II 231.604-nm line (6.39 eV) for krypton. The excitation mechanism of these ionic lines is considered to be a resonance charge-transfer collision with argon or krypton ion due to good energy matching to the corresponding energy levels of nickel ion. These ionic lines measured with the blind cylinder at reduced pressures of around 1300 Pa give the largest signal-to-background ratios; therefore, the analytical application under such optimum plasma conditions is recommended.  相似文献   

19.
Time-resolved FTIR-ATR spectroscopy was used to study the kinetics of the photopolymerization of a diacrylate using a morpholino ketone as photoinitiator. The curing reaction was induced by monochromatic UV radiation with a wavelength of 313 nm. The influence of photoinitiator concentration [PI], light intensity I0, and temperature on the polymerization rate Rp and the double bond conversion was investigated. The dependence of Rp on [PI] and I0, respectively, was found to fit with theoretical predictions very well. In contrast, an increase of the temperature was found to have no effect on Rp.  相似文献   

20.
Summary Capillary gas chromatography coupled to both mass spectrometry (GCMS) and atomic emission spectroscopy (GC-AED) was studied for the analysis of bromine-containing alkylbenzenes present in sludge from a nickel refinery. Owing to the high abundance of chlorinated compounds, location of the brominated species was difficult based on GC-MS with electron ionization. In contrast, GC-MS with negative chemical ionization (GC-NCIMS) and GC-AED enabled bromine-selective detection and were utilized for an effective location of the brominated compounds. Bromine-selective detection by GC-NCIMS relied on the monitoring of Br (m/z 79/81) with CH4 as ionization gas, while atomic emission (827.2 nm) from a helium plasma was utilized in the case of GC-AED. While GC-NCIMS was 30–500 times more sensitive than GC-AED, the latter technique was superior for quantitative purposes. Because the bromine response of the AED was independent of molecular structure, quantification was possible without reference material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号