首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 g/l for Cr(VI) and 5 g/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

2.
Hagendorfer H  Goessler W 《Talanta》2008,76(3):656-661
Due to its extensive use in industrial processes, large quantities of chromium compounds are discharged into the environment. Common approaches for the speciation of Cr employ the determination of Cr(VI) and total Cr. The focus of the present work was a separation of Cr(III) and Cr(VI) species, with a minimum of sample preparation, by keeping an eye on the more relevant and toxic Cr(VI). For the successful simultaneous separation of both chromium species we implemented a RSpak NN-814 4DP (PEEK, 4 mm x 150 mm) multi-mode column using an eluent containing 90 mM ammonium sulfate and 10 mM ammonium nitrate, adjusted to pH 3.5. At a flow of 0.3 mL min(-1) the separation of both Cr species was possible within 8 min. Further the octopole reaction system of the inductively coupled plasma mass spectrometer was systematically studied and optimised to reduce the influence of polyatomic interferences. The major advantage of the developed method compared to published methods is that a derivatisation of the Cr(III) species--an invasion in the speciation--is not required. With the used multi-mode column both chromium species are retained. Furthermore the pH of the mobile phase (pH 3.5) prevents reduction of Cr(VI) as well as precipitation of Cr(III) during the analysis. A limit of determination of approximately 0.5 microg L(-1) for both chromium species with an injection volume of 25 microL was obtained. The optimised method was successfully applied to the determination of Cr(VI) in cement samples as well as chromium speciation analysis in homeopathic drugs.  相似文献   

3.
A simple and sensitive method has been developed for species selective determination of chromium(III) and chromium(VI) in water by electrothermal atomic absorption spectrometry. The procedure is based on selective absorption of Cr(III) on a cellulose micro column (pH 11, 0.5 mol L(-1) NaCl). Total chromium was subsequently determined after appropriate reduction of Cr(VI) to Cr(III). Recoveries of more than 97% were found. A concentration factor of 100 was achieved. The relative standard deviations (n=10) at the 40 ng L(-1) level for chromium(III) and chromium(VI) were 2.3% and 1.8% and corresponding limits of detection (based on 36) were 1.8 ng L(-1) and 5.1 ng L(-1), respectively. No interference effects have been observed from other investigated species and the method has been successfully applied to natural water samples.  相似文献   

4.
The simultaneous determination of As(III), As(V), monomethylarsenic acid (MMA), dimethylarsinic acid (DMA) and Cr(VI) in fresh water has been carried out by coupling an anion-exchange column to an inductively coupled plasma-mass spectrometer. Optimisation of chromatographic conditions led to baseline separation of signals from the five species in approximately 9 min using gradient elution. Detection limits were 0.02-0.05 microg As l(-1) and 5.5 microg Cr l(-1). Repeatability was 2-3% for arsenic species and higher, i.e., 8%, for Cr(VI) due to the higher background for this species. Arsenic species and hexavalent chromium stability in surface water samples was evaluated, and storage conditions were set to 1 day at 4 degrees C in polyethylene flasks (without acidification) in order to avoid As(III)-As(V) conversions. The method was applied to the analysis of surface water.  相似文献   

5.
A method for the simultaneous determination of Cr(III) and Cr(VI) with reversed-phase ion-pair HPLC employing chromium-specific detection by flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma mass spectrometry (ICP-MS) is presented. Experimental parameters of the chromatographic separation, such as concentration of the ion-pairing reagent, pH and polarity of the mobile phase have been optimized for two different ion-pairing reagents, tetrabutylammonium phosphate (TBA) and tetraethylammonium nitrate (TEA). Best chromatographic conditions have been obtained with a polymer-based reversed-phase column (Hamilton PRP1) and mobile phases containing either TBA (1 mmol/l) in methanol-water (60:40, v/v) or TEA (2 mmol/l) in water at a pH between 3 and 4. With FAAS the detection limits (3) have been found to be 24 g/l for Cr(III) and 40 g/l for Cr(VI). A detection limit of 0.3 g/l Cr(3) for both chromium species has been obtained when ICP-MS has been used for detection. The method has been applied to analyze tap- and groundwater and to investigate the behaviour of Cr(III) and Cr(VI) in spiked tap-water, as well as to analyze aqueous extracts of coal fly ash (NIST SRM 1633a) and of an ash from a wood treatment company.  相似文献   

6.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

7.
A simple method has been proposed for the determination of chromium species by high-performance liquid chromatography (HPLC) after preconcentration by the ionic liquid, 1-butyl-3-methyimidazolium hexafluorophosphate ([C4MIM][PF6]). The simultaneous preconcentration of Cr(VI) and Cr(III) in wastewater was achieved with ammonium pyrrolidinedithiocarbamate (APDC) as the chelating agent and the ionic liquid [C4MIM][PF6] as the extractant. Baseline separation of the APDC chelates of Cr(III) and Cr(VI) was realised on a RP-C18 column using a mixture of methanol–acetonitrile–water (53:14:33, v/v) as the mobile phase at a flow rate of 1.0 mL min− 1. The influences of several variables on the complexation and extraction were evaluated: pH, reaction time, APDC concentration and metal ion interference. Our results showed that when the linear concentration of Cr(VI) and Cr(III) ranged from 25 to 200 μg L− 1, their linear correlation coefficients were between 0.9977 and 0.9978, their recoveries ranged from 91.8% to 95.8% and their relative standard deviations (n = 3) were between 0.31% and 1.8%. Common metal ions in water did not interfere with the determination. This method is a simple, fast, accurate, highly stable and selective method and has successfully been applied to the speciation of chromium in wastewater.  相似文献   

8.
Fang Guozhen  Luo Jikuen 《Talanta》1992,39(12):1579-1582
This paper shows that the sensitivity of the Cr(III, VI)—Chrome Azurol S (CAS)-cetylpyridinium bromide (CPB)—hydroxylamine hydrochloride system can be increased and the wavelength of maximum absorption slightly shifted by addition of zinc(II) and that the analytical data are practically identical for both Cr(III) and Cr(VI), indicating that under the conditions used both initial oxidation states of chromium yield the same final oxidation state, Cr(III). On the basis of the Cr(III, VI)—CAS—CPB—NH2OH·HCl—Zn systems a new, highly sensitive and selective method for spectrophotometric determination of microamounts of Cr(III, VI) has been developed, with molar absorptivity of 1.27 × 105 1. mole−1 . cm−1 for the complex at 620 nm and linear calibration up to 0.4 μg/ml chromium. Various foreign ions do not interfere. The method can be applied to direct determination of chromium in steels.  相似文献   

9.
The presence of chromium in chromium-tanned leather represents a considerable health problem since it can lead to chronic allergic contact dermatitis. Apart from trivalent chromium (Cr(III)), which is used for tanning, leather often contains hexavalent chromium (Cr(VI)), resulting from the oxidation of Cr(III) during the tanning process. This study deals with the chromium compounds in simulated sweat when brought into contact with Cr(III) or Cr(VI) and with chromium-tanned leathers. A capillary electrophoresis (CE) method was developed, with inductively coupled plasma-sector field-mass spectrometry (ICP-SF-MS) for element-specific detection. Two different electrophoretic runs, applying once the positive and once the negative polarity mode, were necessary for the detection of positively and negatively charged chromium species. Although sometimes described in the literature, a pre-run derivatization of the chromium-species was not performed here to prevent species transformation. 50 mmol.L(-1) sodium phosphate at a pH of 2.5 was used as CE separation buffer and as make-up liquid for the CE-ICP-SF-MS interface. When applied to simulated sweat samples incubated with Cr(VI), this method showed that methionine is responsible for the reduction of Cr(VI) into Cr(III), which, at its turn, forms a complex with lactic acid. In the case of sweat plus Cr(III), the latter step was also seen. Applied to simulated sweat in contact with leather samples, the method developed showed the presence of the former species among a much more complex pattern.  相似文献   

10.
The development of an analytical technique is described which may be used to determine chromium, chromium(III) and chromium(VI) in estuarine and coastal waters. The method is based on selective micro-solvent extraction with subsequent GFAAS. The technique has been applied in a major North Sea estuary. The results obtained confirm that thermodynamic factors alone cannot be relied upon to describe the form of chromium in estuaries. Kinetic factors appear to have a strong influence over speciation and lead to the persistence of Cr(III) species in environments where Cr(VI) would be expected to be present.  相似文献   

11.
Yu R  Hu Z  Ye M  Che J 《色谱》2012,30(4):409-413
建立了采用快速溶剂萃取-离子色谱同时测定塑料中三价铬和六价铬的方法。三价铬和六价铬分别以吡啶-2,6-二羧酸(PDCA)和1,5-二苯卡巴肼(DPC)作为络合剂在柱前和柱后进行衍生化,分别在紫外和可见波长下采用紫外检测器进行检测,灵敏度高,基体干扰小。本方法对三价铬和六价铬的检出限分别为5.0 μg/L和0.5 μg/L;分别在50~1000 μg/L和5.0~100 μg/L范围内呈现良好的线性关系,线性相关系数分别为0.9994和0.9998;三价铬和六价铬的回收率范围为90.7%~101.1%,相对标准偏差(RSD)为1.7%~4.4%。该方法分析速度快、灵敏度高、重现性好,可用于塑料中三价铬和六价铬的同时测定。  相似文献   

12.
The development of an analytical technique is described which may be used to determine chromium, chromium(III) and chromium(VI) in estuarine and coastal waters. The method is based on selective micro-solvent extraction with subsequent GFAAS. The technique has been applied in a major North Sea estuary. The results obtained confirm that thermodynamic factors alone cannot be relied upon to describe the form of chromium in estuaries. Kinetic factors appear to have a strong influence over speciation and lead to the persistence of Cr(III) species in environments where Cr(VI) would be expected to be present.  相似文献   

13.
Zhao Y  Han G 《Talanta》1994,41(8):1247-1250
A spectrophotometric procedure is suggested for the determination of Cr(III). The reaction between Cr(III) and 2-(5-bromo-2-pyridylazo)-5-dimethylaminophenol is accelerated by sodium dodecyl sulphate(SDS), sodium benzoate causes a further increase in the absorbance of the chelate. The optimum pH range for the reaction is 5-5.8(benzoate buffer). The chelate exhibits maximum absorbance at 590 nm, obeys Beer's law over the concentration range 0.02-0.56 microg/ml of Cr(III), has molar absorptivity of 7.8 x 10(4) 1. mol(-1) cm(-1) and a Sandell sensitivity of 0.66 ng/cm. The metal to ligand ratio is 1:2 in the absence of SDS and 1:1 in its presence. A procedure for the determination of Cr(III) and Cr(VI), when present together, is described. The method has been applied to the analysis of Cr(III) in tap water.  相似文献   

14.
A simple and rapid method is developed for the simultaneous determination of Cr(VI) and Cr(III) based on the formation of their different complexes with ammonium pyrrolidine-dithiocarbamate (APDC). Separation is performed using reversed-phase high-performance liquid chromatography coupled with UV detection. The conditions for complex formation and speciation are determined, such as solution pH, amount of APDC, temperature, and type of mobile phase. In order to substantially reduce the analysis time, the separation is carried out without extraction of chromium-APDC complexes from the mother liquor. Under the optimum analysis conditions, the chromatograms obtained show good peak separation, and the absolute detection limits (3s) are 2.2 microg/L for Cr(VI) and 4.5 microg/L for Cr(III). The calibration curves are linear from 3 to 5000 microg/L for Cr(VI) and 5 to 3000 microg/L for Cr(III). The relative standard deviations of peak areas in five measurements using a sample solution of 200 microg/L are less than 2% for Cr(VI) and 4% for Cr(III), indicating good reproducibility for this analytical method. Furthermore, simultaneous determination of Cr(VI) and Cr(III) is successful with the application of the proposed procedure in the synthetic wastewaters containing common heavy metal ions: Fe(III), Pb(II), Cd(II), Cu(II), and Zn(II).  相似文献   

15.
Electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-ES) has been used for the sequential determination of Cr(III) and Cr(VI). The method is based on the difference between the chelate reactions of the two Cr species and acetylacetone. Cr(III) chelate was separated from Cr(VI) and determined with use of acetylacetone as chemical modifier. The retained Cr(VI) in graphite tube was analyzed subsequently, after addition of polytetrafluoroethylene (PTFE) as chemical modifier. The different factors affecting the vaporization behavior of Cr(III) acetylacetonate were investigated in detail. The detection limits for Cr (III) and Cr(VI) were 0.56 and 1.4 ng mL(-1), respectively, and relative standard deviations for 0.1 microg mL(-1) Cr(III) and 0.1 microg mL(-1) Cr(VI) were 2.5% (n = 6) and 4.8% (n = 6), respectively. The linear ranges of the calibration curve for both Cr(IIl) and Cr(VI) covered three orders of magnitude. The proposed method was used to analyze water samples with satisfactory results.  相似文献   

16.
A sensitive and selective method has been developed to determine Cr(III) and total Cr in natural water samples by ICP-AES with a Cr(III)-imprinted aminopropyl-functionalised silica gel adsorbent. The Cr(III)-imprinted and non-imprinted adsorbent were prepared by an easy one-step reaction with a surface imprinting technique. Their maximum static adsorption capacities for Cr(III) were 11.12 mg g?1 and 3.81 mg g?1, respectively. The relative selectivity factors (α r) for Cr(III)/Co(II), Cr(III)/Au(III), Cr(III)/Ni(II), Cr(III)/Cu(II), Cr(III)/Zn(II), and Cr(III)/Cr(VI), were 377, 21.4, 15.4, 27.7, 26.4, and 31.9, respectively. Under the optimal conditions, Cr(III) can be absorbed quantitatively, but Cr(VI) was not retained. Total chromium was obtained after reducing Cr(VI) to Cr(III) with hydroxyammonium chloride. The detection limit (3σ) for Cr(III) was 0.11 ng mL?1. The relative standard deviation was 1.2%. The proposed method has been validated by analysing two certified reference materials and successfully applied to the determination and speciation of chromium in natural water samples with satisfactory results.  相似文献   

17.
Summary A method for the determination of chromium(VI) in solid materials with a Cr(VI) content at ppm level in the presence of ca. 10% Cr(III) has been devised. Chromium(VI) is extracted with 0.1M NaOH in a double-water bath (97° C) for 90 min. Differential-pulse polarography in 1M NaOH and spectrophotometry with 1,5-diphenylcarbazide have been tested for use in the final determination of Cr(VI). After extraction in the form of dithiocarbamate into methylisobutylketone or ethylacetate, chromium was determined by flame AAS and DPP in an organic extract.  相似文献   

18.
A novel and selective method for the fast determination of trace amounts of chromium species in water samples has been developed. The procedure is based on the selective formation of chromium diethyldithiocarbamate complexes at different pH in the presence of Mn(II) as an enhancement agent of chromium signals followed by elution with organic eluents and determination by atomic flame absorption spectrometry. The maximum capacity of the employed disks was found to be (396±3) µg and (376±2) µg for Cr(III) and Cr(VI), respectively. The detection limit of the proposed method is 49 and 43 ng·L?1 for Cr(III) and Cr(VI), respectively. The proposed method was successfully applied for determination of chromium species Cr(III) and Cr(VI) in different water samples.  相似文献   

19.
Wen B  Shan XQ  Lian J 《Talanta》2002,56(4):681-687
A rapid and simple method has been developed for the separation of chromium (III) and Cr(VI) species in river and reservoir water. Chromium (III) can be chelated with 8-hydroxyquinoline immobilized polyacrylonitrile (PAN) fiber, whereas Cr(VI) cannot. Chelated Cr(III) can be eluted with 2 mol l(-1) HCl-0.1 mol l(-1) HNO(3). Cr(VI) in the filtrate and Cr(III) in the eluant were determined by inductively coupled plasma mass spectrometry. The effect of pH, sample flow rate, eluant type and its volume on the concentration effectiveness of Cr(III) was investigated. The recommended method has been applied for the separation and determination of Cr(III) and Cr(VI) in river and reservoir water. The results indicated that the recovery of each individual Cr species ranged from 96 to 107% and the R.S.D. were found to be <10% at the level of ng ml(-1). The effect of HNO(3) added in the sampling procedure was also evaluated.  相似文献   

20.
On the basis of the chromogenic reaction of chromium(VI) with 1,5-diphenylcarbohydrazide (DPC) on the surface of Polysorb C-18 beads and the sequential injection renewable surface technique (SI-RST), a highly sensitive reflect spectrophotometric method for the determination of chromium(III) and chromium(VI) was proposed. Considerations of system and flow cell design, and factors that influence the determination performance were discussed. With 300 microl of sample loaded and 0.6 mg of beads trapped, the linear response range was 0.02 - 0.5 mg l(-1) Cr(VI) with a detection limit (3 sigma) of 2.4 microg l(-1) Cr(VI). The method achieves a precision of 1.3% RSD (n = 11) and a throughput of 53 samples per hour. The determination of Cr(III) was based on the same reaction for the determination of Cr(VI) after being oxidized by (NH4)2S2O8. The precision of the oxidation method was evaluated using a 0.2 mg l(-1) Cr(III) standard, yielding an RSD of 2.5% (n = 11). The average recovery of Cr(III) oxidized was tested to be 99.1%. The proposed method was used in the simultaneous determination of Cr(VI) and Cr(III) in water samples, and the error was less than 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号