首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An algorithm is devised to derive exact travelling wave solutions of differential-difference equations by means of Jacobian elliptic function. For illustration, we apply this method to solve the discrete nonlinear Schrödinger equation, the discretized mKdV lattice equation and the Hybrid lattice equation. Some explicit and exact travelling wave solutions such as Jacobian doubly periodic solutions, kink-type solitary wave solutions are constructed.  相似文献   

2.
构造非线性差分方程精确解的一种方法   总被引:1,自引:0,他引:1  
在齐次平衡法、试探函数法的基础上,给出指数函数所组成的两种试探函数法,并借助符号计算系统Mathematica构造了Hybrid-Lattice系统、mKdV差分微分方程、Ablowitz-Ladik.Lattice6系统等非线性离散系统的新的精确孤波解.  相似文献   

3.
The hyperbolic function method for nonlinear wave equations is presented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Gr?bner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.  相似文献   

4.
In this paper, we construct a new mixed function method for the first time. By using this new method, we study the two nonlinear differential-difference equations named the generalized Hybrid lattice and two-component Volterra lattice equations. Some new exact solutions of mixed function type such as discrete solitary wave solutions, discrete kink and anti-kink wave solutions and discrete breather solutions with kink and anti-kink character are obtained and their dynamic properties are also discussed. By using software Mathematica, we show their profiles.  相似文献   

5.
本文通过利用一个广泛的题设提出一种推广的双曲函数展开法, 并利用此方法求解了 离散的 mKdV 方程, 获得了丰富的显式精确解. 此方法可以用于求其他非线性系统的精确解.  相似文献   

6.
非线性波方程准确孤立波解的符号计算   总被引:75,自引:0,他引:75  
该文将机械化数学方法应用于偏微分方程领域,建立了构造一类非线性发展方程孤立波解的一种统一算法,并在计算机数学系统上加以实现,推导出了一批非线性发展方程的精确孤立波解.算法的基本原理是利用非线性发展方程孤立波解的局部性特点,将孤立波表示为双曲正切函数的多项式.从而将非线性发展方程(组)的求解问题转化为非线性代数方程组的求解问题.利用吴文俊消元法在计算机代数系统上求解非线性代数方程组,最终获得非线性发展方程(组)的准确孤立波解.  相似文献   

7.
We extended the (G′/G)-expansion method to two well-known nonlinear differential-difference equations, the discrete nonlinear Schrödinger equation and the Toda lattice equation, for constructing traveling wave solutions. Discrete soliton and periodic wave solutions with more arbitrary parameters, as well as discrete rational wave solutions, are revealed. It seems that the utilized method can provide highly accurate discrete exact solutions to NDDEs arising in applied mathematical and physical sciences.  相似文献   

8.
In this paper, we generalize the exp-function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations, to nonlinear differential–difference equations (NDDEs). As an illustration, two series of exact travelling wave solutions of the discrete sine–Gordon equation are obtained by means of the exp-function method. As some special examples, these new exact travelling wave solutions can degenerate into the kink-type solitary wave solutions reported in the open literature.  相似文献   

9.
In this paper, an analytical method is proposed to construct explicitly exact and approximate solutions for nonlinear evolution equations. By using this method, some new traveling wave solutions of the Kuramoto-Sivashinsky equation and the Benny equation are obtained explicitly. These solutions include solitary wave solutions, singular traveling wave solutions and periodical wave solutions. These results indicate that in some cases our analytical approach is an effective method to obtain traveling solitary wave solutions of various nonlinear evolution equations. It can also be applied to some related nonlinear dynamical systems.  相似文献   

10.
We modified the so-called extended simplest equation method to obtain discrete traveling wave solutions for nonlinear differential-difference equations. The Wadati lattice equation is chosen to illustrate the method in detail. Further discrete soliton/periodic solutions with more arbitrary parameters, as well as discrete rational solutions, are revealed. We note that using our approach one can also find in principal highly accurate exact discrete solutions for other lattice equations arising in the applied sciences.  相似文献   

11.
mKdV方程和mKP方程组的新的精确孤立波解   总被引:2,自引:0,他引:2  
用三角函数假设法和一种新辅助方程的解构造mK dV方程和mKP方程组的精确孤立波解.这种方法也可用于寻找其它非线性发展方程的新的孤立波解.  相似文献   

12.
We investigate exact soliton solutions for the discrete nonlinear electrical transmission line by performing the simplest equation method from a trivial seed solution. Starting from the nonlinear propagation of signals in electrical transmission lines, we derive exact traveling kink and antikink solitary wave solutions. It is shown that under a safe range of parameter, the shape of kink soliton can be controlled well by adjusting the parameter of the line. The analytical solutions for the kink and antikink solitary waves are tested in direct simulations.  相似文献   

13.
In this paper, we study rational formal solutions of differential-difference equations by using a generalized ansätz. With the help of symbolic computation Maple, we obtain many explicit exact solutions of differential-difference equations(DDEs). The solutions contain solitary wave solutions and periodic wave solutions. The (2 + 1)-dimensional Toda lattice equation, relativistic Toda lattice equation and the discrete mKdV equation are chosen to illustrate our algorithm.  相似文献   

14.
In this paper, we construct new explicit exact solutions for the coupled the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation (KD equation) by using a improved mapping approach and variable separation method. By means of the method, new types of variable-separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) for the KD system are successfully obtained. The improved mapping approach and variable separation method can be applied to other higher-dimensional coupled nonlinear evolution equations.  相似文献   

15.
Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the nonlinear dispersive Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation. Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, exact solitary wave solutions are obtained.  相似文献   

16.
By using the extended hyperbolic auxiliary equation method, we present explicit exact solutions of the high-order nonlinear Schrödinger equation with the third-order and fourth-order dispersion and the cubic-quintic nonlinear terms, describing the propagation of extremely short pulses. These solutions include trigonometric function type and exact solitary wave solutions of hyperbolic function type. Among these solutions, some are found for the first time.  相似文献   

17.
In this research, we find the exact traveling wave solutions involving parameters of the generalized Hirota–Satsuma couple KdV system according to the modified simple equation method with the aid of Maple 16. When these parameters are taken special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the modified simple equation method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented.  相似文献   

18.
许丽萍 《应用数学》2012,25(3):481-487
把最近提出的G′/G展开法推广到了非线性微分差分方程,利用该方法成功构造了一种修正的Volterra链和Toda链的双曲函数、三角函数以及有理函数三类涉及任意参数的行波解,当这些参数取特殊值时,可得这两个方程的扭状孤立波解、奇异行波解以及三角函数状的周期波解等.研究结果表明,该算法探讨非线性微分差分方程精确解十分有效、简洁.  相似文献   

19.
In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here.  相似文献   

20.
By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of nonlinear evolution equations with variable coefficients. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients. As a result, new explicit solutions including solitary wave solutions and trigonometric function solutions are obtained with the aid of symbolic computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号