首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analysis is presented for the unsteady laminar flow of an incompressible Newtonian fluid in an annulus between two concentric spheres rotating about a common axis of symmetry. A solution of the Navier-Stokes equations is obtained by employing an iterative technique. The solution is valid for small values of Reynolds numbers and acceleration parameters of the spheres. In applying the results of this analysis to a rotationally accelerating sphere, a virtual moment of intertia is introduced to account for the local inertia of the fluid.Nomenclature R i radius of the inner sphere - R o radius of the outer sphere - radial coordinate - r dimensionless radial coordinate, - meridional coordinate - azimuthal coordinate - time - t dimensionless time, - Re i instantaneous Reynolds number of the inner sphere, i R k 2 / - Re o instantaneous Reynolds number of the outer sphere, o R o 2 / - radial velocity component - V r dimensionless radial velocity component, - meridional velocity component - V dimensionless meridional velocity component, - azimuthal velocity component - V dimensionless azimuthal velocity component, - viscous torque - T dimensionless viscous torque, - viscous torque at surface of inner sphere - T i dimensionless viscous torque at surface of inner sphere, - viscous torque at surface of outer sphere - T o dimensionless viscous torque at surface of outer sphere, - externally applied torque on inner sphere - T p,i dimensionless applied torque on inner sphere, - moment of inertia of inner sphere - Z i dimensionless moment of inertia of inner sphere, - virtual moment of inertia of inner sphere - Z i,v dimensionless virtual moment of inertia of inner sphere, - virtual moment of inertia of outer sphere - i instantaneous angular velocity of the inner sphere - o instantaneous angular velocity of the outer sphere - density of fluid - viscosity of fluid - kinematic viscosity of fluid,/ - radius ratio,R i/R o - swirl function, - dimensionless swirl function, - stream function - dimensionless stream function, - i acceleration parameter for the inner sphere, - o acceleration parameter for the outer sphere, - shear stress - r dimensionless shear stress,   相似文献   

2.
Summary An analysis of the effects of couple-stresses on the effective Taylor diffusion coefficient has been carried out with the help of two non-dimensional parameters based on the concentration of suspensions and , a constant associated with the couple-stresses. It is observed that the concentration distribution increases with increasing or The effective Taylor diffusion coefficient falls rapidly with increasing when is negative.
Zusammenfassung Der Einfluß der Momentenspannungen auf den effektiven Taylorschen Diffusionskoeffizienten wird untersucht. Dabei treten zwei dimensionslose Parameter and auf: Der erste bezieht sich auf die Suspensionskonzentration, der zweite kennzeichnet die Momentenspannungen. Man findet, daß die Verteilungsgeschwindigkeit mit wachsendem oder zunimmt. Dagegen fällt der Taylorsche Diffusionskoeffizient bei wachsendem stark ab, wenn negativ ist.

a Tube radius - C Concentration - C i Body moment vector - C 0 Concentration at the axis of the tube - C m Mean concentration - D Molecular diffusion coefficient - d ij Symmetric part of velocity gradient - F Function of and characterising effective Taylor diffusion coefficient - f i Body force vector - H A function of and - K 2 Integration constant - K * Effective Taylor diffusion coefficient - k Radius of gyration of a unit cuboid with its sides normal to the spatial axes - I n Modified Bessel's function ofnth order - L Length of the tube over which the concentration is spread - M Function ofH and - M ij Couple stress tensor - P Function of - p Fluid pressure - Q Volume rate of the transport of the solute across a section of the tube - r Radial distance from the axis of the tube - T ij Stress tensor - t Time coordinate - T ij A Antisymmetric part of the stress tensor - u Relative fluid velocity - Average velocity - v i Velocity vector - Fluid velocity at any point of the tube - v 0 n Velocity of Newtonian fluid at the axis of the tube - i Vorticity vector - x Axial coordinate - x 1 Relative axial coordinate - z Non-Dimensional radial coordinate - Density - ij Symmetric part of the stress tensor - µ Viscosity of the fluid - µ ij Deviatoric part ofM ij - , Constants associated with couple-stress With 3 figures  相似文献   

3.
Summary The first part of this paper is concerned with the optimal design of spherical cupolas obeying the von Mises yield condition. Five different load combinations, which all include selfweight, are investigated. The second part of the paper deals with the optimal quadratic meridional shape of cupolas obeying the Tresca yield condition, considering selfweight plus the weight of a non-carrying uniform cover. It is established that at long spans some non-spherical Tresca cupolas are much more economical than spherical ones.
Optimale Kuppeln gleicher Festigkeit: Kugelschalen und axialsymmetrische Schalen
Übersicht Im ersten Teil dieser Arbeit wird der optimale Entwurf sphärischer Kuppeln behandelt, wobei die von Misessche Fließbewegung zugrunde gelegt wird. Fünf verschiedene Lastkombinationen werden untersucht. Der zweite Teil befaßt sich mit der optimalen quadratischen Form des Meridians von Kuppeln, die der Fließbedingung von Tresca folgen.

List of Symbols ak, bk, ck, Ak, Bk, Ck coefficients used in series solutions - A, B constants in the nondimensional equation of the meridional curve - normal component of the load per unit area of the middle surface - meridional and circumferential forces per unit width - radial pressure per unit area of the middle surface, - skin weight per unit area of the middle surface, - vertical external load per unit horizontal area, - base radius, - R radius of convergence - s - cupola thickness, - u, w subsidiary functions for quadratic cupolas - vertical component of the load per unit area of middle surface - resultant vertical force on a cupola segment - structural weight of cupola, - combined weight of cupola and skin, - distance from the axis of rotation, - vertical distance from the shell apex, - z auxiliary variable in series solutions - specific weight of structural material of cupola - radius of the middle surface, - uniaxial yield stress - meridional stress, - circumferential stress, - a, b, c, d, e subsidiary variables used in evaluating the meridional stress - auxiliary function used in series solutions This paper constitutes the third part of a study of shell optimization which was initiated and planned by the late Prof. W. Prager  相似文献   

4.
Dimensional analysis of pore scale and field scale immiscible displacement   总被引:1,自引:0,他引:1  
A basic re-examination of the traditional dimensional analysis of microscopic and macroscopic multiphase flow equations in porous media is presented. We introduce a macroscopic capillary number which differs from the usual microscopic capillary number Ca in that it depends on length scale, type of porous medium and saturation history. The macroscopic capillary number is defined as the ratio between the macroscopic viscous pressure drop and the macroscopic capillary pressure. can be related to the microscopic capillary number Ca and the LeverettJ-function. Previous dimensional analyses contain a tacit assumption which amounts to setting = 1. This fact has impeded quantitative upscaling in the past. Our definition for , however, allows for the first time a consistent comparison between macroscopic flow experiments on different length scales. Illustrative sample calculations are presented which show that the breakpoint in capillary desaturation curves for different porous media appears to occur at 1. The length scale related difference between the macroscopic capillary number for core floods and reservoir floods provides a possible explanation for the systematic difference between residual oil saturations measured in field floods as compared to laboratory experiment.  相似文献   

5.
The response of a turbulent boundary layer to a short roughness strip is investigated using laser Doppler velocimetry (LDV) and laser induced fluorescence (LIF). Skin friction coefficients are inferred from accurate near-wall measurements. There is an undershoot in , where is the undisturbed smooth wall skin friction coefficient, immediately after the strip. Downstream of the strip, overshoots before relaxing back to unity in an oscillatory manner. The roughness strip has a major effect on the turbulent stresses ; these quantities increase, relative to the undisturbed smooth wall, in the region between the two internal layers originating at the upstream and downstream edges of the strip. The increase in the ratio suggests a decrease in near-wall anisotropy. From the flow visualizations, it is inferred that streamwise vortical structures are weakened immediately downstream of the strip. Consistently, streamwise length scales are also reduced; direct support for this is provided by measured two-point velocity correlations.  相似文献   

6.
An analysis is presented for laminar source flow between infinite parallel porous disks. The solution is in the form of a perturbation from the creeping flow solution. Expressions for the velocity, pressure, and shear stress are obtained and compared with the results based on the assumption of creeping flow.Nomenclature a half distance between disks - radial coordinate - r dimensionless radial coordinate, /a - axial coordinate - z dimensionless axial coordinate, /a - radial coordinate of a point in the flow - R dimensionless radial coordinate of a point in the flow, /a - velocity component in radial direction - u =a/, dimensionless velocity component in radial direction - velocity component in axial direction - v = a/}, dimensionless velocity component in axial direction - static pressure - p = (a 2/ 2), dimensionless static pressure - =p(r, z)–p(R, z), dimensionless pressure drop - V magnitude of suction or injection velocity - Q volumetric flow rate of the source - Re source Reynolds number, Q/4a - reduced Reynolds number, Re/r 2 - critical Reynolds number - R w wall Reynolds number, Va/ - viscosity - density - =/, kinematic viscosity - shear stress at upper disk - 0 = (a 2/ 2), dimensionless shear stress at upper disk - shear stress ratio, 0/( 0)inertialess - u = , dimensionless average radial velocity - u/u, ratio of radial velocity to average radial velocity - dimensionless stream function  相似文献   

7.
    
Summary A homogeneous, non-viscid fluid with a free surface, moving under the influence of gravity, is considered. If the motion, between a fixed point P and the surface, can be considered as statistically steady and horizontally statistically homogeneous, the pressure at the point P, averaged over a sufficiently long time interval, is given by the corresponding average hydrostatic expression minus , where = density and = corresponding average square of the vertical velocity at the point P. The approximate validity of this relation is shown for the example of waves approaching and breaking over a sloping beach.  相似文献   

8.
The concept of an interval stochastic matrix is introduced. We prove a combinatorial theorem which describes the network flow associated with an interval matrix. The semi-invariant vectors of are characterized in terms of eigenvectors with unit eigenvalue of stochastic matrices . These results are then applied to the approximation and machine computation of invariant measures of dynamical systems.Funded under Australian Research Council Grant A 8913 2609.  相似文献   

9.
Conclusions Similariry conditions have been established on the basis of which the viscosity can be simulated in testing viscoelastic materials for tension (compression) under hydrostatic pressure. It has been shown that criteria and account for the effect of viscosity, while the II number accounts for the effect of pressure. The criterion is, in form, identical to the analogous parameter in the theory of non-Newtonian fluid flow. It has been shown, furthermore, that criterion is the monodromic version of criterion (the similarity number). When P=0 or P is very small and the II number degenerates, then only criterion or criterion should be used.Institute of Problems in Mechanics, Academy of Sciences of the USSR, Moscow. Translated from Prikladnaya Mekhanika, Vol. 11, No. 6, pp. 109–114, June, 1975.  相似文献   

10.
Summary One-one correspondence is postulated for two coordinate continua. One continuum is regarded as the initially undeformed state of a currently deformed continuum. The two continua are orthogonal trasformations each to the other. The square root of the quadratic metric, when the appropriate self-conjugate stretch dyadic is expressed in its principal form, gives the mathematically linear form to the analysis. The self-conjugate dyadic is expressed as =grad grad P in terms of a scalar potential function P. The physical and mathematical continuity of the strain dyadic is ensured by curl =0.A 4-vector analysis is evolved from a 4-vector quinternion analysis. The 4-vector analysis is of the same form as the usual 3-vector analysis that evolved from Hamilton's quaternion analysis.
Sommario Si postula una corrispondenza biunivoca per due continui coordinati. Un continuo viene considerato come lo stato inizialmente non deformato di un continuo attualmente deformato.I due continui sono trasformazioni ortogonali uno dell'altro. La radice quadrata della metrica quadratica, quando la relativa diade di dilatazione autoconiugata venga espressa nella sua forma principale dà la forma matematicamente lineare alla analisi.La diade coniugata viene espresse come =grad grad P in termini di una funzione potenziale scalare P. La continuità fisica e matematica della diade di deformazione è assicurata da rot =0.Una analisi tetravettoriale viene sviluppata da analisi di quinternioni tetravettoriali. L'analisi tetravettoriale è della stessa forma dell'analisi trivettoriale che viene vsiluppata dalla analisi quaternionica trivettoriale di Hamilton.

A generalisation that, when particularised, applies to the finite or infinitesimal straining of elastic bodies, incremental straining of plastic or fluidic bodies in 3-dimensional continua and to the space-time continuum as a 4-dimensional continuum.  相似文献   

11.
Zusammenfassung Ein Vergleich im Frequenzbereich zeigt, daß bei der Berechnung der Verweilzeitverteilung mit dem Dispersionsmodell das endlich begrenzte System für Péclet-Zahlen Pe > 10 mit guter Näherung durch ein einseitig unbegrenztes System und für Pe > 50 durch ein beidseitig unbegrenztes System ersetzt werden kann.
The dispersion model. A comparison of approximations
A comparison in the frequency domain shows that for the determination of the residence time distribution with the dispersion model the finitely restricted system may be substituted with good approximation for Peclet numbers Pe > 10 by a one-side unrestricted system and for Pe > 50 by a both-side unrestricted system.

Bezeichnungen A Rohrquerschnitt - A=A mittlerer Strömungsquerschnitt in der Schüttschicht - Konzentration (Partialdichte) der Bezugskomponente i - Bezugskonzentration nach Gl. (5) - ci Konzentration (Dichte) der reinen Bezugskomponente i - D axialer Dispersionskoeffizient - E Fehler im Frequenzbereich nach Gl. (36) - G(,) Übertragungsfunktion - G(,i) Frequenzgang - L Länge der Schüttschicht - m Masse - Massenstrom - Péclet-Zahl - s Laplace-Variable - t Zeit - t Impulsbreite - v Strömungsgeschwindigkeit im leeren Rohr - mittlere axiale Strömungsgeschwin digkeit in der Schüttschicht - V=AL Zwischenraumvolumen der Schüttschicht - x Ortskoordinate - (t) Dirac-Stoss - Porosität - dimensionslose Zeit - dimensionslose Konzentration - Laplace-Transformierte der Konzentration - Fourier-Transformierte der Konzentration - dimensionslose Ortskoordinate - =s dimensionslose Laplace-Variable - mittlere Verweilzeit - Kreisfrequenz - = dimensionslose Kreisfrequenz Indices A Ausgang - D Dispersion - E Eingang - i Bezugskomponente - K Konvektion Mitteilung Nr. 44 des Institutes für Mess-und Regel-technik der Eidgenössischen Technischen Hochschule Zürich (Vorsteher: Prof. Dr. P. Profos)  相似文献   

12.
A new analysis method is developed to study the double- and triple-correlations of velocity fluctuations inside a stationary three-dimensional turbulent boundary layer (3D-TBL). Experimental eigenvalues and eigenvectors of measured Reynolds stress-tensors are obtained by diagonalization; a set of semi-empirical relationships is derived and these are interpreted (qualitatively) in terms of statistics of gas dynamics. Sample-averaged double- and triple-correlations are Monte Carlp (MC-) simulated, simultaneously, with 3 independent perturbed centered-Gaussians (trial probability density functions) along experimental eigenvectors. Comparisons with corresponding time-averaged measurements show excellent agreement for the double-correlations and qualitative agreement for the triple-correlations. Also, a statistical model for the double-correlations is presented: it can predict the -profiles inside the S-shaped wind tunnel at EPFL, given .  相似文献   

13.
An experimental investigation was undertaken to study the apparent thickening behavior of dilute polystyrene solutions in extensional flow. Among the parameters investigated were molecular weight, molecular weight distribution, concentration, thermodynamic solvent quality, and solvent viscosity. Apparent relative viscosity was measured as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm I.D. tube. As increased, slight shear thinning behavior was observed up until a critical wall shear rate was exceeded, whereupon either a large increase in or small-scale thickening was observed depending on the particular solution under study. As molecular weight or concentration increased, decreased and, the jump in above , increased. increased as thermodynamic solvent quality improved. These results have been interpreted in terms of the polymer chains undergoing a coil-stretch transition at . The observation of a drop-off in at high (above ) was shown to be associated with inertial effects and not with chain fracture due to high extensional rates.  相似文献   

14.
D. Quemada 《Rheologica Acta》1978,17(6):643-653
Summary A non-newtonian viscosity equation where is the volume concentration and is an intrinsic viscosity, function of a relative shear rate and being structural parameters, has been proposed in a previous paper (1). From empirical grounds, the valuep = 1/2 holds for a large class of systems, like suspensions of rodand disc-shaped particles. In the high shear rate limit, aCasson law-type is recovered and discussed, especially the concentration dependence of the yield stress. However, the latter disappears in the low shear limit, and must be considered as a pseudo-yield stress. Good agreement is found in this low shear limit with some theoretical results ofBueche for polymers. More generally, the viscosity equation displays pseudo-plastic behaviour and fitting it on experimental data allows the determination of the structural parameters. Some examples (especially Red Blood Cell suspensions and Blood) are studied and support the model. Nevertheless, for spherical particle suspensions, the best fitting is reached forp = 1. Accurate values of particle diameters can be deduced from the structural parameter , in this case.
Zusammenfassung In einer vorangegangenen Arbeit (1) wurde eine Viskositätsgleichung für eine nicht-newtonsche Flüssigkeit von der Form vorgeschlagen, worin die Volumenkonzentration und eine Grenzviskosität bedeutet; die letztere stellt eine Funktion der relativen Schergeschwindigkeit dar, die Konstantenk 0,k und bezeichnen Strukturparameter. Empirisch wird gefunden, daß für eine große Klasse von Systemen, wie z. B. stäbchen- und scheibchenförmigen Teilchen,p = 1/2 gilt. In der Grenze hoher Schergeschwindigkeiten wird ein Verlauf gemäß einer Casson-Gleichung gefunden und diskutiert, insbesondere bezüglich der Konzentrationsabhängigkeit der Fließspannung. Allerdings verschwindet diese in der Grenze niedriger Schergeschwindigkeiten und muß daher als Pseudo-Fließspannung betrachtet werden. In diesem Grenzfall wird eine gute Übereinstimmung mit theoretischen Voraussagen vonBueche an Polymeren gefunden. Ganz allgemein beschreibt die obige Viskositätsgleichung ein pseudoplastisches Verhalten, und ihre Anpassung an experimentelle Werte erlaubt die Bestimmung der Strukturparameter. Einige Beispiele, insbesondere Suspensionen von roten Blutkörperchen und Blut, werden untersucht und bestätigen das Modell. Allerdings erhält man bei Suspensionen kugelförmiger Teilchen die beste Anpassung fürp = 1. In diesem Fall kann man mit Hilfe des Strukturparameters genaue Werte der Teilchendurchmesser bestimmen.


With 5 figures and 3 tables  相似文献   

15.
B. Hinkelmann 《Rheologica Acta》1982,21(4-5):491-493
From literature some representative equations have been compiled describing the influence of filler on the viscosity of polymer melts. By application of these on the experimental results obtained from GF-SAN it was found that the relative viscosity R , i.e. the ratio of the viscosities of the filled and unfilled melt, shows a pronounced dependence on the shear rate but not on the shear stress. Defining R with constant and not with constant (as it is usually done), an analytical approach is possible independent of Further the influence of pressure, temperature and filler content on the zero-shear viscosity of filled polymer melts may be expressed by a modified Arrhenius equation.
  相似文献   

16.
Time-dependent nonlinear flow behavior was investigated for a model hard-sphere suspension, a 50 wt% suspension of spherical silica particles (radius = 40 nm; effective volume fraction = 0.53) in a 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The suspension had two stress components, the Brownian stress B and the hydrodynamic stress H After start-up of flow at various shear rates , the viscosity growth function + (t, ) was measured with time t until it reached the steady state. The viscosity decay function (t, ) was measured after cessation of flow from the steady as well as transient states. At low where the steady state viscosity ( ) exhibited the shear-thinning, the (t, ) and + (t, ) data were quantitatively described with a BKZ constitutive equation utilizing data for nonlinear relaxation moduli G (t, ). This result enabled us to attribute the thinning behavior to the decrease of the Brownian contribution B = B / (considered in the BKZ equation through damping of G (t, )). On the other hand, at high where ( ) exhibited the thickening, the BKZ prediction largely deviated from the + (t, ) and + (t, ) data, the latter obtained after cessation of steady flow. This result suggested that the thickening was due to an enhancement of the hydrodynamic contribution H = H / (not considered in the BKZ equation). However, when the flow was stopped at the transient state and only a small strain (<0.2) was applied, H was hardly enhanced and the (t, ) data agreed with the BKZ prediction. Correspondingly, the onset of thickening of + (t, ) was characterized with a -insensitive strain ( 0.2). On the basis of these results, the enhancement of H (thickening mechanism) was related to dynamic clustering of the particles that took place only when the strain applied through the fast flow was larger than a characteristic strain necessary for close approach/collision of the particles.  相似文献   

17.
The work presented is a wind tunnel study of the near wake region behind a hemisphere immersed in three different turbulent boundary layers. In particular, the effect of different boundary layer profiles on the generation and distribution of near wake vorticity and on the mean recirculation region is examined. Visualization of the flow around a hemisphere has been undertaken, using models in a water channel, in order to obtain qualitative information concerning the wake structure.List of symbols C p pressure coefficient, - D diameter of hemisphere - n vortex shedding frequency - p pressure on model surface - p 0 static pressure - Re Reynolds number, - St Strouhal number, - U, V, W local mean velocity components - mean freestream velocity inX direction - U * shear velocity, - u, v, w velocity fluctuations inX, Y andZ directions - X Cartesian coordinate in longitudinal direction - Y Cartesian coordinate in lateral direction - Z Cartesian coordinate in direction perpendicular to the wall - it* boundary layer displacement thickness, - diameter of model surface roughness - elevation angleI - O boundary layer momentum thickness, - w wall shearing stress - dynamic viscosity of fluid - density of fluid - streamfunction - x longitudinal component of vorticity, - y lateral component of vorticity, - z vertical component of vorticity, This paper was presented at the Ninth symposium on turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

18.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

19.
A mathematical model consisting of equations of mass and momentum and for the velocity field has been used for computing the entry length of the flow of non-Newtonian fluids in laminar, transition and turbulent regions. Experimental data measured in a vertical flow of a suspension of solid particles in air have been used for verifying the predictions. n flow index for laminar flow - Re Reynolds number defined for the flow of the carrier medium - q exponent for turbulent flow - ratio of core radius with a flat velocity profile to pipe radius - c ratio of the axial component of local velocity in the core to mean velocity - w mean flow velocity - ratio of axial distance from the pipe entrance to the pipe radius - ratio of the entrance length to the pipe radius - relative mass fraction of particles - ratio of the distance from the pipe wall to the pipe radius - coefficient of pressure loss due to friction  相似文献   

20.
HARRIS  S. D.  INGHAM  D. B.  POP  I. 《Transport in Porous Media》1997,26(2):205-224
An analysis is made of the transient free convection from a vertical flat plate which is embedded in a fluid-saturated porous medium. It is assumed that for time a steady state temperature or velocity has been obtained in the boundary-layer which occurs due to a uniform flux dissipation rate . Then at time the heat flux on the plate is suddenly changed to and maintained at this value for 0$$ " align="middle" border="0"> . An analytical solution has been obtained for the temperature/velocity field for small times in which the transport effects are confined within an inner layer adjacent to the plate. These effects cause a new steady boundary layer. A numerical solution of the full boundary-layer equations is then obtained for the whole transient from to the steady state, firstly by means of a step-by-step method and then by a matching technique. The transition between the two distinct solution methods is always observed to occur very near to the turning point of the plate surface temperature, a time at which the fluid temperature is close to its steady state profile. The solution obtained using the step-by-step method shows excellent agreement with the small time analytical solution. Results are presented to illustrate the occurrence of transients from both small and large increases and decreases in the levels of existing energy inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号