首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the initial reports showing the ability of electrospray ionization mass spectrometry (ESI-MS) to study intact noncovalent biomolecular complexes, an increasing number of uses for this technique in studying biochemical systems is emerging. We have investigated the ability of ESI-MS to characterize the metal-binding properties of calcium (Ca2+) binding proteins by studying the incorporation of Ca2+ and cadmium (Cd2+) into wild-type and mutant calbindin D9K. ESI-MS showed that wild-type calbindin D9K binds two Ca2+ ions with similar affinities while the binding of two Cd2+ ions is sequential, as is the binding of the two Ca2+ or Cd2+ ions to the N56A mutant of calbindin. The binding of Ca2+ to the wild-type protein was clearly seen to be cooperative. These results demonstrate the potential efficacy of ESI-MS to discriminate between cooperative and independent site metal binding to metalloproteins.  相似文献   

2.
The modulation of metal ions on protein function is well recognized and of paramount importance in protein biochemistry. To date, very few methods allow direct determination of protein-metal ion interactions, as well as exact stoichiometric binding ratios. In this work we demonstrate the usefulness of two on-line size exclusion gel filtration mass spectrometry approaches to directly detect protein-metal ion adducts, as well as determine exact protein-metal ion stoichiometries. We show that on-line size exclusion column chromatography (SEC) and rapid in-line desalting (RILED) coupled to microelectrospray mass spectrometry (microESI-MS) can be used for such analyses. The SEC approach can be effectively used to both separate proteins in a complex mixture and exchange buffers prior to the electrospray process. While RILED does not allow for protein separation, it provides a much faster high-throughput desalting procedure than the conventional SEC technique. Specifically, we show that SEC/microESI-MS and RILED/MS can be used to determine calcium ion binding stoichiometries to a high-affinity, metal ion binding protein, calbindin D(28K). Furthermore, the same approaches can also be used to determine metal ion binding stoichiometries of low-affinity metal-binding proteins such as Spo0F.  相似文献   

3.
A simple, low-cost, expedient method has been developed for identification of proteins isolated from two-dimensional (2D) gels. The method described uses a disposable on-line clean-up device, a syringe infusion pump and electrospray ionization mass spectrometry (ESI-MS). The on-line clean-up and concentrating device is a tapered capillary column filled with 1.5 cm of 5 microm C18 particles. The short column was easily prepared and was connected directly to the ESI source through a low-flow ESI sprayer. Peptides resulting from enzymatic digestion of proteins were eluted from the short column isocratically using a syringe infusion pump and analyzed by ESI-MS. This simple set-up was found useful in the analysis of proteins isolated from 2D gels. Compared to the more conventional micro-liquid chromatography/tandem mass spectrometry (microLC/MS/MS), this method can identify proteins rapidly without the need for an HPLC pump and removes the problem of cross-contamination caused by system carryover. These advantages make the method described competitive with conventional LC/MS even though the latter method gives slightly expanded sequence coverage.  相似文献   

4.
Identifying the Cys residues involved in disulfide linkages of peptides and proteins that contain complex disulfide bond patterns is a significant analytical challenge. This is especially true when the Cys residues involved in the disulfide bonds are closely spaced in the primary sequence. Peptides and proteins that contain free Cys residues located near disulfide bonds present the additional problem of disulfide shuffling via the thiol-disulfide exchange reaction. In this paper, we report a convenient method to identify complex disulfide patterns in peptides and proteins using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with partial reduction by tris(2-carboxyethyl)phosphine (TCEP). The method was validated using well-characterized peptides and proteins including endothelin, insulin, alpha-conotoxin SI and immunoglobulin G (IgG2a, mouse). Peptide or protein digests were treated with TCEP in the presence of an alkylation reagent, maleimide-biotin (M-biotin) or N-ethylmaleimide (NEM), followed by complete reduction with dithiothreitol and alkylation by iodoacetamide (IAM). Subsequently, peptides that contained alkylated Cys were analyzed by capillary LC/ESI-MS/MS to determine which Cys residues were modified with M-biotin/NEM or IAM. The presence of the alkylating reagent (M-biotin or NEM) during TCEP reduction was found to minimize the occurrence of the thiol-disulfide exchange reaction. A critical feature of the method is the stepwise reduction of the disulfide bonds and the orderly, sequential use of specific alkylating reagents.  相似文献   

5.
Cysteine residues and disulfide bonds are important for protein structure and function. We have developed a simple and sensitive method for determining the presence of free cysteine (Cys) residues and disulfide bonded Cys residues in proteins (<100 pmol) by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with protein database searching using the program Sequest. Free Cys residues in a protein were labeled with PEO-maleimide biotin immediately followed by denaturation with 8 M urea. Subsequently, the protein was digested with trypsin or chymotrypsin and the resulting products were analyzed by capillary LC/ESI-MS/MS for peptides containing modified Cys and/or disulfide bonded Cys residues. Although the MS method for identifying disulfide bonds has been routinely employed, methods to prevent thiol-disulfide exchange have not been well documented. Our protocol was found to minimize the occurrence of the thiol-disulfide exchange reaction. The method was validated using well-characterized proteins such as aldolase, ovalbumin, and beta-lactoglobulin A. We also applied this method to characterize Cys residues and disulfide bonds of beta 1,4-galactosyltransferase (five Cys), and human blood group A and B glycosyltransferases (four Cys). Our results demonstrate that beta 1,4-galactosyltransferase contains one free Cys residue and two disulfide bonds, which is in contrast to work previously reported using chemical methods for the characterization of free Cys residues, but is consistent with recently published results from x-ray crystallography. In contrast to the results obtained for beta 1,4-galactosyltransferase, none of the Cys residues in A and B glycosyltransferases were found to be involved in disulfide bonds.  相似文献   

6.
Mass spectrometry, proteomics, and protein chemistry methods are used to characterize the cleavage products of 79 kDa transferrin proteins induced by iron-catalyzed oxidation, including a novel C-terminal polypeptide released upon disulfide reduction. Top-down electrospray ionization tandem mass spectrometry (ESI-MS/MS) of intact multiply-charged transferrin from a variety of species (human, bovine, rabbit, chicken) performed on a quadrupole time-of-flight mass spectrometer yields multiply-charged b(n)-products originating near residues 56-69 from the N-terminal region, in addition to their complementary y(n)-products. Incubation of transferrin with reductants, such as dithiothreitol (DTT) or tris(2-carboxyethyl)-phosphine (TCEP), yields an increase in multiple charging observed by ESI-MS and an increase in molecular weight consistent with disulfide reduction. However, mammalian transferrins release a 6-8 kDa fragment upon disulfide reduction. Protein acetylation and MS/MS sequencing demonstrate that the fragment originates from the C-terminus of the protein, and that it is a separate polypeptide linked via three disulfide bonds to the main transferrin chain. The existence of a separate C-terminal chain is not annotated in protein sequence databases and, to date, has not been reported in the literature. Iron-catalyzed cleavage induces fragments originating from both the N- and C-terminus of transferrin.  相似文献   

7.
Projection-reconstruction NMR experiments have been shown to significantly reduce the acquisition time required to obtain protein backbone assignment data. To date, this concept has only been applied to smaller (15)N/(13)C-labeled proteins. Here, we show that projection-reconstruction NMR techniques can be extended to larger protonated and perdeuterated proteins. We present a suite of (4,2)D triple-resonance experiments for protein backbone assignment and a Hybrid Backprojection/Lower-Value algorithm for reconstructing data with relatively weak signal-to-noise ratios. In addition, we propose a sampling theorem and discuss its implication on the choice of projection angles. We demonstrate the efficacy of this approach using the 29 kDa protein, human carbonic anhydrase II and the 30 kDa protein, calbindin D(28K).  相似文献   

8.
Herein, it is shown that a medium-resolution solution structure of a protein can be obtained with the sole assignment of the protein backbone and backbone-related constriants if a derivative with a firmly bound paramagnetic metal is available. The proof-of-concept is provided on calbindin D9k, a calcium binding protein in which one of the two calcium ions can be selectively substituted by a paramagnetic lanthanide ion. The constraints used are HN (and Ha) nuclear Overhauser effects (NOEs), hydrogen bonds, dihedral angle constriants from chemical shifts, and the following paramagnetism-based constraints: 1) pseudocontact shifts, acquired by substituting one (or more) lanthanide(s) in the C-terminal calcium binding site; 2) N-HN residual dipolar couplings due to self-orientation induced by the paramagnetic lanthanide(s); 3) cross-correlations between the Curie and internuclear dipole-dipole interactions; and 4) paramagnetism-induced relaxation rate enhancements. An upper distance limit for internuclear distances between any two backbone atoms was also given according to the molecular weight of the protein. For this purpose, the paramagnetism-based constraints were collectively implemented in the program CYANA for solution structure determinations, similarly to what was previously done for the program DYANA. The method is intrinsically suitable for large molecular weight proteins.  相似文献   

9.
A small-molecule catalyst of protein folding in vitro and in vivo   总被引:3,自引:0,他引:3  
BACKGROUND: The formation of native disulfide bonds between cysteine residues often limits the rate and yield of protein folding. The enzyme protein disulfide isomerase (PDI) catalyzes the interchange of disulfide bonds in substrate proteins. The two -Cys-Gly-His-Cys- active sites of PDI provide a thiol that has a low pKa value and a disulfide bond of high reduction potential (Eo'). RESULTS: A synthetic small-molecule dithiol, (+/-)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), has a pKa value of 8.3 and an Eo' value of -0.24 V. These values are similar to those of the PDI active sites. BMC catalyzes the activation of scrambled ribonuclease A, an inactive enzyme with non-native disulfide bonds, and doubles the yield of active enzyme. A monothiol analog of BMC, N-methylmercaptoacetamide, is a less efficient catalyst than BMC. BMC in the growth medium of Saccharomyces cerevisiae cells increases by > threefold the heterologous secretion of Schizosaccharomyces pombe acid phosphatase, which has eight disulfide bonds. This effect is similar to that from the overproduction of PDI in the S. cerevisiae cells, indicating that BMC, like PDI, can catalyze protein folding in vivo. CONCLUSIONS: A small-molecule dithiol with a low thiol pKa value and high disulfide Eo' value can mimic PDI by catalyzing the formation of native disulfide bonds in proteins, both in vitro and in vivo.  相似文献   

10.
Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.  相似文献   

11.
The polypeptide backbone of proteins is held together by two main types of covalent bonds: the peptide bonds that link the amino acid residues and the disulfide bonds that link pairs of cysteine amino acids. Disulfide bonds form as a protein folds in the cell and formation was assumed to be complete when the mature protein emerges. This is not the case for some secreted human blood proteins. The blood clotting protein, fibrinogen, and the protease inhibitor, α2-macroglobulin, exist in multiple disulfide-bonded or covalent states in the circulation. Thousands of different states are predicted assuming no dependencies on disulfide bond formation. In this study, probabilities for disulfide bond formation are employed to estimate numbers of covalent states of a model polypeptide with reference to α2-macroglobulin. When disulfide formation is interdependent in a protein, the number of covalent states is greatly reduced. Theoretical estimates of the number of states will aid the conceptual and experimental challenges of investigating multiple disulfide-bonded states of a protein.  相似文献   

12.
Seminal studies by Richardson and Thornton defined the constraints imposed by protein structure on disulfide formation and flagged forbidden regions of primary or secondary structure seemingly incapable of forming disulfide bonds between resident cysteine pairs. With respect to secondary structure, disulfide bonds were not found between cysteine pairs: A. on adjacent beta-stands; B. in a single helix or strand; C. on non-adjacent strands of the same beta-sheet. In primary structure, disulfide bonds were not found between cysteine pairs: D. adjacent in the sequence. In the intervening years it has become apparent that all these forbidden regions are indeed occupied by disulfide-bonded cysteines, albeit rather strained ones. It has been observed that sources of strain in a protein structure, such as residues in forbidden regions of the Ramachandran plot and cis-peptide bonds, are found in functionally important regions of the protein and warrant further investigation. Like the Ramachandran plot, the earlier studies by Richardson and Thornton have identified a fundamental truth in protein stereochemistry: "forbidden" disulfides adopt strained conformations, but there is likely a functional reason for this. Emerging evidence supports a role for forbidden disulfides in redox-regulation of proteins.  相似文献   

13.
蛋白质中二硫键的定位及其质谱分析   总被引:2,自引:0,他引:2  
二硫键是一种常见的蛋白质翻译后修饰,对稳定蛋白质的空间结构,保持及调节其生物活性等都有着非常重要的作用。因此,确定二硫键在蛋白质中的位置是全面了解含二硫键蛋白化学结构的重要方面。在众多实验方法中,现代质谱技术因其操作简单、快速、灵敏等优点而成为分析二硫键的重要手段。本文介绍了目前主要的定位二硫键的方法,以及质谱在二硫键定位分析中的应用与进展。  相似文献   

14.
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.  相似文献   

15.
The sequence determination of a new variant of beta-LG II, detected as a minor component by reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (RP-HPLC/ESI-MS) analysis of the whey fraction from a milk sample taken from an individual donkey belonging to the 'Ragusana' species of eastern Sicily, is reported. Direct RP-HPLC/ESI-MS analysis of the whey fraction from this milk sample allowed the identification of a new variant of beta-LG II, based on the determination of the M(r) of the intact protein. The new protein, with an experimentally determined M(r) of 18311 Da, was detected as a minor component in the whey fraction investigated. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)MS and RP-HPLC/ESI-MS/MS analyses of the tryptic digest of the new protein demonstrate that it presents two amino acid substitutions with respect to the sequence of beta-LG II A, namely a substitution Pro-->Cys at position 110, and a substitution Asp-->Gly at position 162. The disulfide bonds between the four cysteines, not directly determined in donkey's and horse's beta-LG II, were shown to occur between Cys(106)-Cys(120) and Cys(66)-Cys(161), as in other mammalian beta-LGs. The new beta-LG II variant from donkey was named D.  相似文献   

16.
Proteins that are used as therapeutic drugs act in the extracellular microenvironment. They usually have a small number of intramolecular disulfide bonds to help maintain their tertiary structure in the vascular circulation. In general, most cysteine residues are part of a disulfide bond with free sulfhydrals being uncommon. We have studied whether the site-specific chemical reduction of disulfides and the incorporation of a 3-carbon methylene bridge between the cysteines in interferon-α 2a would change the structure of this protein. Bridging of both of the disulfide bonds of interferon-α 2a was studied using two different molecular simulation protocols: (1) molecular dynamics, and (2) stochastic dynamics. We have shown that the disulfide bonds in interferon-α 2a can be reduced and chemically modified without significantly altering the tertiary structure of the protein. This offers the novel possibility of chemically modifying therapeutically important proteins without affecting their biological properties.  相似文献   

17.
The location of the disulfide bonds in a recombinant monoclonal antibody was confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry (MS). A non-reduced Endoproteinase Lys-C (Endo Lys-C) digest of the antibody was analyzed directly by MALDI-TOFMS. The sample was then reduced on-plate by depositing dithiothreitol (DTT) on the sample spot and re-analyzed by MALDI-TOFMS. The disulfide bonds were assigned based on the disappearance of certain mass ions in the non-reduced digest and the appearance of product ions in the reduced digest. A rapid LC/ESI-MS protocol was also developed to determine the location of the disulfide bonds. The peptides generated from the Endo Lys-C digest of the antibody were partially separated on a high performance liquid chromatography (HPLC) column by utilizing a steep gradient and analyzed by ESI-MS. The masses of the partially resolved peptides were determined by deconvoluting the mass spectra.  相似文献   

18.
An isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS/MS) method with an on-line sample clean-up device, for the quantitative analysis of human urine for the benzene exposure biomarker S-phenylmercapturic acid (SPMA), was developed and validated. The sample clean-up system was constructed from an autosampler, a reversed-phase C18 trap cartridge, a two-position switching valve, and controlling computer software and hardware. The sample clean-up system was interfaced via 1/20 splitting to the ESI source of a triple-quadrupole mass spectrometer using negative ion mode and multiple reaction monitoring for SPMA and the isotope-labeled internal standard. A strategy was adopted to acquire pooled blank urine matrix and quality control samples spiked with standards. Validated procedures and data on method specificity, detection limits, standard curves, precision and recovery, sample storage stability, and inter-laboratory comparison are presented. The analytical system was fully automated. No tedious manual sample clean-up procedures are required. With the selectivity and the sensitivity provided by ESI-MS/MS detection, the analytical system can be used for high-throughput and accurate determination of SPMA levels in human urine samples, as a biomarker for environmental as well as occupational benzene exposure.  相似文献   

19.
The presence of disulfide bonds in proteins has very important implications on the three-dimensional structure and folding of proteins. An adequate treatment of disulfide bonds in de-novo protein simulations is therefore very important. Here we present a computational study of a set of small disulfide-bridged proteins using an all-atom stochastic search approach and including various constraining potentials to describe the disulfide bonds. The proposed potentials can easily be implemented in any code based on all-atom force fields and employed in simulations to achieve an improved prediction of protein structure. Exploring different potential parameters and comparing the structures to those from unconstrained simulations and to experimental structures by means of a scoring function we demonstrate that the inclusion of constraining potentials improves the quality of final structures significantly. For some proteins (1KVG and 1PG1) the native conformation is visited only in simulations in presence of constraints. Overall, we found that the Morse potential has optimal performance, in particular for the β-sheet proteins.  相似文献   

20.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号