首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
An analysis of the nu(17)-nu(4) difference bands near 800 cm(-1) of two isotopic species, (10)B(2)H(6) and (11)B(2)H(6), of diborane has been carried out using infrared spectra recorded with a resolution of ca. 0.003 cm(-1). In addition, the nu(17) band of (10)B(2)H(6) has been recorded and assigned. Since this band in (11)B(2)H(6) had already been studied (R. L. Sams, T. A. Blake, S. W. Sharpe, J.-M. Flaud, and W. J. Lafferty, J. Mol. Spectrosc. 191, 331-342 (1998)), it was possible to derive precise energy levels and Hamiltonian constants for the 4(1) vibrational states of both isotopic species. Copyright 2000 Academic Press.  相似文献   

2.
Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-μm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model that takes into account both the Coriolis interactions between the spin-rotation energy levels of the (201) vibrational "bright" state with those of the (220) "dark" state. The interactions between the (003) bright state with the (022) dark state were similarly treated. The spin-rotation resonances within each of the NO(2) vibrational states were also taken into account. The precise vibrational energies and the rotational, spin-rotational, and coupling constants were obtained for the two dyads {(220), (201)} and {(022), (003)} of the (14)N(16)O(2) interacting states. From the experimental line intensities of the 2nu(1) + nu(3) and 3nu(3) bands, a determination of their vibrational transition moment constants was performed. A comprehensive list of line positions and line intensities of the {2nu(1) + 2nu(2), 2nu(1) + nu(3)} and the {2nu(2) + 2nu(3), 3nu(3)} interacting bands of (14)N(16)O(2) was generated. In addition, assuming the harmonic approximation and using the Hamiltonian constants derived in this work and in previous studies (A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 60, 839-850 (1998)), we have generated synthetic spectra for the {(022), (003)}-{(040), (021), (002)} hot bands at 6.3 μm and for the {(220), (201)}-{(100), (020), (001)} hot bands at 3.5 μm, which are in good agreement with the observed spectra. Copyright 2000 Academic Press.  相似文献   

3.
High-resolution Fourier transform spectra covering the 720-920 cm−1 spectral region have been used to perform a reanalysis of the ν2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν2 - ν2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν2 - ν2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν1, 2ν2, and ν3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O2.  相似文献   

4.
High-resolution Fourier transform spectra of the D(2)(M)Se with M = 76, 77, 78, 80, and 82 in the regions of the first and second bending overtones 2nu(2) and 3nu(2) near 1480 and 2210 cm(-1), respectively, were recorded for the first time and assigned. On the basis of these experimental data, rotation-vibration energies were determined and fitted together with those of the (010) state reported earlier (W. Jerembeck, H. Bürger, J.-M. Flaud, and Ph. Arcas, J. Mol. Spectrosc. 197, 215-221 (1999)) by using the "Global Fit" procedure. The obtained set of 43 fitted parameters for these three vibrational states of the D(2)(80)Se species (altogether 86 fitted parameters for 12 states of five M species) reproduces the rotation-vibration energies of all studied states with accuracies close to experimental uncertainties. Copyright 2000 Academic Press.  相似文献   

5.
Using a high-resolution Fourier transform spectrum recorded at SOLEIL for a rather large value of the (pressure?×?path length) product a new investigation of the very weak 2ν 1 absorption band of nitrogen dioxide, located at 2627.377?cm?1 was performed, together with an extension up to higher N and Ka values of a previous investigation of the strong ν 1?+?ν 3 band [J.-Y. Mandin, V. Dana, A. Perrin, J.-M. Flaud, C. Camy-Peyret, L. Régalia and A. Barbe, J. Mol. Spectrosc. 181, 379 (1997)]. The 2ν 1 lines proved to be perturbed by local vibration–rotation resonances which couple the (2,0,0) energy levels with those of the (1,2,0) and (1,0,1) states. Also the (1,0,1) energy levels are also coupled by a C-type Coriolis resonance with those of the (1,2,0) and (2,0,0) energy levels. The final energy levels calculation involves six interacting states of NO2, {(2,0,0), (1,2,0), (1,0,1), (0,0,2), (0,4,0), (0,0,2)}. An estimation of line intensities parameters was performed for the very weak 2ν 1 band. Finally a list of line parameters (positions, intensities and shapes) for the 2ν 1, ν 1?+?2ν 2 and ν 1?+?ν 3 bands of NO2, was generated and is now included in the GEISA database (https://geisa.aeris-data.fr/).  相似文献   

6.
A list of line positions and, for the first time, of line intensities was generated for the ν1, ν2, and ν3 fundamental bands of the 12C16OF35Cl and 12C16OF37Cl isotopologs of carbonyl chlorofluoride, located at 5.3, 9.1, and 13.1 μm, respectively. In addition, for the most abundant isotopolog (12C16OF35Cl) this linelist includes also the contributions from the first two associated hot bands. The parameters included in this database were generated by combining the results of previous experimental analyses and ab initio calculations [Perrin A, Flaud JM, Bürger H, Pawelke G, Sander S, Willner H. First high resolution analysis of the six fundamental bands ν1, ν2, ν3, ν4, ν5 and ν6 of COF35Cl in the 340 to 2000 cm−1 region. J Mol Spectrosc 2001;209:122-232; Demaison J, Perrin A, Bürger H. Ab initio anharmonic force field and equilibrium structure of carbonyl chlorofluoride. J Mol Spectrosc 2003;221:47-56]. For the purpose of the present work, a partial re-investigation of the ν1 of COF35Cl was performed, together with the first identification of the ν2 band of COF37Cl.These parameters were generated in order to improve the quality of remote sensing of the atmosphere in the mid-IR. Analyses of atmospheric solar occultation spectra measured by the JPL MkIV interferometer show that the new linelist not only improves the quality of retrievals of COFCl, but also of several other gases whose absorptions overlap those of COFCl.  相似文献   

7.
High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm−1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1 + ν3)=2475.828004(29), ν0(ν1 + ν2 + ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1 + ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower-lying vibrational states [W.J. Lafferty, J.-M. Flaud, R.L. Sams, EL Hadjiabib, J. Mol. Spectrosc. 252 (2008) 72-76] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud, W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.  相似文献   

8.
We measured absolute line intensities in two bands of (12)C(2)H(2) near 7.5 μm, namely the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) and nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) bands, using Fourier transform spectroscopy with an accuracy estimated to be better than 2%. Using theoretical predictions from Watson [J. K. G. Watson, J. Mol. Spectrosc. 188, 78 (1998)], the observation of the forbidden nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) band and the Herman-Wallis behavior exhibited by its rotational lines were studied quantitatively in terms of two types of interactions affecting the levels involved by the band: l-type resonance and Coriolis interaction. In the case of the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) band, the influence of l-type resonance is also confirmed. We also attributed the intensity asymmetry observed between the R and P branches of that latter band to a Coriolis interaction with l = 1 levels. We did not observe the nu(4) + nu(5)(Sigma(-)(u))-0(Sigma(+)(g)) band, consisting only of a Q branch, in agreement with Watson's prediction. Copyright 2000 Academic Press.  相似文献   

9.
Measurements of line center positions of H218O in the 2900 to 3400 cm?1 region have been made at high resolution. This region contains absorptions of the (020) band and P-branch absorptions of the (100) and (001) bands of H218O. Values of the energy levels of the (020) state were determined in which ground state energy levels derived by Fraley, Rao, and Jones [J. Mol. Spectrosc.29, 312 (1969)] and Williamson, Rao, and Jones [J. Mol. Spectrosc.40, 372 (1971)] were used in the analysis. A new set of ground state levels was obtained by an iterative procedure.  相似文献   

10.
Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3-16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers nu(0)(nu(3)) = 1030.0946 cm(-1) and nu(0)(nu(1)) = 1086.7490 cm(-1) were obtained for the nu(3) and nu(1) bands, respectively. Copyright 2000 Academic Press.  相似文献   

11.
By comparing computed and observed spectra over the region 4210–4310 cm-1, it is shown that the H2O line parameters calculated by Flaud and Camy-Peyret for this region represent a significant improvement over those listed in the revised version of the AFCRL Atmospheric Absorption Line Parameter Compilation.  相似文献   

12.
As a continuation of the work carried out on the ground and (010) vibrational states of water (R. Lanquetin, L. H. Coudert, and C. Camy-Peyret, 1999, J. Mol. Spectrosc. 195, 54-57), rotational energy levels for these two states are revisited here and new accurate rotational energy levels are considered for the three next vibrational states, that is, the (020), (100), and (001) states. Experimental rotational energies, along with their uncertainties, are retrieved through analyses of already published data sets and of discharge and flame emission spectra. The maximum value of J for the obtained levels is 25 for the ground state, 21 for the (010) state, and 20 for the three next states. Based on the bending-rotation Hamiltonian approach (L. H. Coudert, 1997, J. Mol. Spectrosc. 181, 246-273), a new theoretical approach is proposed to calculate rotational energies in the five interacting vibrational states under consideration and is used to carry out an analysis of the experimental energies. Comparisons with other existing energy level data sets are also presented. Copyright 2001 Academic Press.  相似文献   

13.
Line positions, intensities, and lower state energies have been calculated for eight hot bands of 16O3 in the 3.3-μm spectral region. The results are based on spectroscopic parameters deduced in recent high-resolution laboratory studies and improved rotational energy levels of the (103), (004), and (310) vibrational states derived by refitting earlier data and experimental (004) energy levels from measurements of the 4ν3 - ν3 hot band. The good quality of the new parameters has been verified through comparisons of line-by-line simulations with high-resolution laboratory spectra. The present work and the results of our analyses of the main bands at 3.6 μm [Smith et al., J. Mol. Spectrosc.139, 171-181 (1990)] and 3.3 μm [Camy-Peyret et al., J. Mol. Spectrosc.141, 134-144 (1990)] provide a complete set of ozone spectroscopic line parameters covering the 3-μm region.  相似文献   

14.
Relative line intensities of trans- and cis-HONO and -DONO have been measured using absorption spectra in the far-infrared previously recorded by high-resolution Fourier-transform spectroscopy [A. Dehayem-Kamadjeu, O. Pirali, J. Orphal, I. Kleiner, P.-M. Flaud, J. Mol. Spectrosc. 234 (2005) 182-189]. These relative, experimental line intensities (120 lines for trans-HONO and 94 for cis-HONO, as well as 46 lines for trans-DONO and 31 for cis-DONO) were then least-squares fitted leading to the determination of “relative” permanent dipoles moments (b-component) and their rotational corrections for the trans- and cis-HONO and -DONO species. Then these “relative” permanent dipoles moments and their rotational corrections were scaled to the absolute values derived from Stark effect measurements [M. Allegrini, J.W.C. Johns, A.R.W. McKellar, P. Pinson, J. Mol. Spectrosc. 79 (1980) 446-454] and used to generate “absolute” line intensities. These “absolute” line intensities were used to derive the concentrations of the trans- and cis-species in the absorption cell. It was then possible, assuming thermodynamic equilibrium, to use the ratio of the concentrations of the trans- and cis-species to re-determine the energy differences (ΔE) between the ground vibrational states of trans- and cis-HONO: these energy differences are 99 ± 25 cm−1 for HONO and 136 ± 30 cm−1 for DONO. Finally applying zero-point-energy corrections we report an average value for ΔEHONO of 107 ± 26 cm−1. This value is in good agreement with previous experimental studies and with recent high-level ab initio calculations.  相似文献   

15.
High-sensitivity, high-resolution intracavity laser absorption spectroscopy (ICLAS) has been used to measure line intensities, nitrogen-broadening coefficients, and self-broadening coefficients in the A band (b(1)Sigma(+)(g) <-- X(3)Sigma(-)(g)) of oxygen. Both linear cavity and ring cavity ICLAS configurations were used for these measurements, and the results were intercompared. The results were compared to values measured using long-path multiple-reflection cells by K. D. Ritter and T. D. Wilkinson [J. Mol. Spectrosc. 121, 1-19 (1987)] and L. Brown and C. Plymate, [J. Mol. Spectrosc. 199, 166-179 (2000)]. New results are included for weakly absorbing transitions, not observed in the earlier measurements, such as high rotational states (up to J = 39), hot-band transitions (v' = 1 <-- v" = 1), and isotopically substituted species ((18)O(2) and (16)O(18)O). Isotopic variants ((16)O(2), (18)O(2), and (16)O(18)O) have similar broadening coefficients for corresponding rotational levels, but the self-broadening coefficients are larger in the hot band (v' = v" = 1) as compared with v' = v" = 0 transitions. An ECS-EP scaling analysis of the v' = v" = 0 self-broadening data accurately represents the available data, with the exception of the N = 0 and N = 1 levels. Copyright 2000 Academic Press.  相似文献   

16.
The analysis of the rotational spectrum of HNO3 has been extended to include the υ8 = υ9 = 1 state at 1205.7 cm−1 and the υ6 = υ7 = 1 state at 1223.4 cm−1. Based on 78-519 GHz data, the assignments in the 8191 vibrational state have been significantly expanded from the previously reported microwave measurements [T.M. Goyette, F.C. De Lucia, J. Mol. Spectrosc. 139 (1990) 241-243]. A new microwave analysis is also reported for the 6171 vibrational state. A simultaneous analysis takes into account the localized ΔKa = ±2 Fermi resonances between the vibrational states, describes the torsional splitting of 3.3 and 1.4 MHz for the 8191 and 6171 states respectively, and fits to experimental accuracy over 1500 rotational transition frequencies that extend up to J = 59. Infrared energy levels [A. Perrin, J.-M. Flaud, F. Keller, A. Goldman, R. D. Blatherwick, F. J. Murcray, C. P. Rinsland, J. Mol. Spectrosc. 194 (1999) 113-123] were also included in the analysis and fit to experimental accuracy. Measurement of strongly perturbed transitions in each vibrational state provide a determination of the band origin difference of 17.733184(17) cm−1. The rotational constants agree well with those predicted by vibrational-rotational constants of the fundamental modes. Furthermore, the analysis will provide a very accurate simulation of the infrared spectrum of HNO3 in the 8.3 μm region.  相似文献   

17.
New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242, 367-377 (1991)], a new and more extended analysis of the nu(3) band located at 1582.1039 cm(-1) has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model which takes into account both the Coriolis interactions between the spin-rotation energy levels of the (001) vibrational state with those of the (020) and (100) states and the spin-rotation resonances within each of the NO(2) vibrational states. Precise vibrational energies and rotational, spin-rotation, and coupling constants were obtained in this way for the first triad of (15)N(16)O(2) interacting states {(020), (100), (001)}. Finally, a comprehensive list of line positions and line intensities of the {nu(1), 2nu(2), nu(3)} interacting bands of (15)N(16)O(2) was generated, using for the line intensities the transition moment operators which were obtained previously for the main isotopic species. Copyright 2000 Academic Press.  相似文献   

18.
Emission spectra of methane-oxygen low-pressure flames have been recorded at a resolution of 0.02 cm-1 with an infrared Fourier transform spectrometer in the spectral ranges 780-1370 and 1800-5000 cm-1. The flame temperature was about 1850 K and a large number of transitions involving J values as high as 34 for an extended set of vibrational states could be assigned. Combined with already published data sets on H2O, our line position analysis yielded rotational energy levels for many of these states, but only the results relevant to the ground and the (010) states are presented here. The experimental energies for these two states have been fitted with the help of the bending-rotation Hamiltonian approach [L. H. Coudert, J. Mol. Spectrosc. 181, 246-273 (1997)], and for each rotational level, the calculated energy along with its uncertainty is reported and compared with the observed value. Comparisons with other available energy level data sets for the ground and (010) states are also presented. Copyright 1999 Academic Press.  相似文献   

19.
F. Meguellati, G. Graner, K. Burczyk, and H. Bürger [J. Mol. Spectrosc. 185, 392-402 (1997)] reported in their paper on nu(3)(A(1)) bands of the (35,37)Cl and (16,18)O isotopomers of FClO(3) that the nu(3) bands, which, although weak, could be well observed for the (16)O isotopomers, disappear almost completely in the spectra of the (18)O isotopomers. Because the A and B values for the (18)O isotopomers are so similar that these molecules are very close to spherical tops, much closer than the values for the (16)O species, disappearance of the band was ascribed to selection rules for tetrahedral molecules, the A(1) vibrations of which are inactive. Alternative explanations are proposed in this paper and analyzed. The most likely explanation is that a coincidence among the intensity parameters is responsible for a very low value of the dipole moment derivative; a weak Fermi resonance with the (v(6) = 2, l = 0) state may also participate in the final total wipeout of the band. It is believed that the last mechanism may be of more general interest. Copyright 2000 Academic Press.  相似文献   

20.
ABSTRACT

We present the first investigation of the ν8 band (C–C symmetric stretch at 870.3137?cm?1), together with an extended analysis of the neighbouring ν21 band (CH3 rock at 921.3756?cm?1) of propane (C3H8). Our previous investigation of the ν21 A-type band [A.Perrin, F. Kwabia-Tchana, J.M.Flaud, L.Manceron, P.Groner, W.J.Lafferty. J. Mol. Spectrosc. 315, 55 (2015)] revealed that the rotational energy levels of 211 are split because of interactions with the internal rotations of the methyl groups, leading to the identification of AA, EE, AE and EA torsional components. In this work, a similar behaviour was observed for the B-type ν8 band and the analysis of the ν21 band was greatly extended. One of the results of the present study is to show that these torsional splittings are due to the existence of anharmonic and Coriolis resonances, coupling the 211 and 81 rotational levels to nearby highly excited levels of the two internal rotations of the methyl groups. Accordingly, an effective ‘vibration – torsion- rotation’ Hamiltonian model was built in the G36 symmetry group which accounts for both types of resonances. In parallel, a code computing the line intensities was developed to allow unambiguous torsional component assignments. The line assignments were performed using a high resolution (0.0015?cm?1) infrared spectrum of propane, recorded with synchrotron radiation at the SOLEIL French light source facility coupled to a Bruker IFS-125 Fourier transform spectrometer. Finally, a linelist of positions and intensities which can be used for the detection of propane in the Earth and outer planets atmospheres was produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号