首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱萍萍  仲政 《力学季刊》2021,42(1):1-13
新型高分子生物材料——双网络水凝胶不仅保持了传统水凝胶优良的物理性质,而且具有超高的刚度、强度和韧性等优异的力学性能,具有广阔的应用前景.它们在大变形下表现出应力软化、颈缩、应变硬化、损伤各向异性和损伤交叉效应等复杂的非线性力学行为.研究双网络水凝胶的损伤力学十分必要.本文聚焦共价交联型双网络水凝胶,描述了它们在实验中观察到的力学行为以及相应的微观损伤机理,介绍了现有的损伤本构模型,并概括了这些模型的优点与不足,最后对双网络水凝胶的损伤力学研究进行了简明扼要的展望.  相似文献   

2.
As polymer networks infiltrated with water, hydro-gels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydro-gels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhe-sive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineer-ing materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune sys-tematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a com-bination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model val-idated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We fur-ther show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dis-sipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.  相似文献   

3.
A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young’s modulus of the elastomer. Data for the dependence of Young’s modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water–glycerol mixtures) are also presented.  相似文献   

4.
New materials are being developed that consist of a solid matrix with pores or vessels through which a functional fluid phase may pass. The fluid can provide expanded functionality such as healing and remodeling, damage disclosure, enhanced heat transfer, and controlled deformation, stiffness and damping. This paper presents a class of engineering models for synthetic microvascular materials that have fluid passages much smaller than a characteristic structural length such as panel thickness. The materials are idealized as two-phase continua with a solid phase and a fluid phase occupying every volume. The model permits the solid and fluid phases to exchange mass, momentum and energy. Balance equations and the entropy inequality for general mixtures are taken from existing continuum mixture theory. These are augmented with certain definite types of solid–fluid interactions in order to enable adequately general, but workable, engineering analysis. The thermomechanical characteristics of this restricted class of materials are delineated. By demanding that the law of increase of entropy be satisfied for all processes, much is deduced about the acceptable forms of constitutive equations and internal state variable evolution equations. The paper concludes with a study of the uniaxial tension behavior of an idealized vascular material.  相似文献   

5.
As one of the most rapidly expanding materials, hydrogels have gained increasing attention in a variety of fields due to their biocompatibility, degradability and hydrophilic properties, as well as their remarkable adhesion and stretchability to adapt to different surfaces. Hydrogels combined with carbon-based materials possess enhanced properties and new functionalities, in particular, conductive hydrogels have become a new area of research in the field of materials science. This review aims to provide a comprehensive overview and up-to-date examination of recent developments in the synthesis, properties and applications of conductive hydrogels incorporating several typical carbon nanoparticles such as carbon nanotubes, graphene, carbon dots and carbon nanofibers. We summarize key techniques and mechanisms for synthesizing various composite hydrogels with exceptional properties, and represented applications such as wearable sensors, temperature sensors, supercapacitors and human-computer interaction reported recently. The mechanical, electrical and sensing properties of carbon nanoparticles conductive hydrogels are thoroughly analyzed to disclose the role of carbon nanoparticles in these hydrogels and key factors in the microstructure. Finally, future development of conductive hydrogels based on carbon nanoparticles is discussed including the challenges and possible solutions in terms of microstructure optimization, mechanical and other properties, and promising applications in wearable electronics and multifunctional materials.  相似文献   

6.
LAKATOS  I.  BAUER  K.  LAKATOS-SZABÓ  J.  CSIGE  I.  HAKL  J.  KRETZSCHMAR  H.-J. 《Transport in Porous Media》1997,27(2):171-184
The effective diffusion coefficient of radon was determined in polymer/silicate gels and clay suspension used as sealing materials in environmental protection. On the basis of the experimental findings, it was concluded that both materials drastically decrease the convective mass transport in porous media. Simultaneously, the effective diffusion coefficient was reduced significantly. Thus, the radon flux might be decreased by 5 to 6 orders of magnitude in porous systems originally having gas or low water saturation by injection of gel-forming materials or placement of clay suspensions. At high water saturation, however, the diffusion transport of radon can be slightly restricted in consolidated and unconsolidated porous media. The laboratory studies may firmly allow us to conclude that hydrogels and clay suspensions are prospective candidates in an integrated environmental technology to be used for restriction of radon migration in subsurface regions.  相似文献   

7.
Fluid-saturated materials are encountered in several areas of engineering and biological applications. Geologic media saturated with water, oil and gas and biological materials such as bone saturated with synovial fluid, soft tissues containing blood and plasma and synthetic materials impregnated with energy absorbing fluids are some examples. In many instances such materials can be examined quite successfully by appeal to classical theories of poroelasticity where the skeletal deformations can be modelled as linear elastic. In the case of soft biological tissues and even highly compressible organic geological materials, the porous skeleton can experience large strains and, unlike rubberlike materials, the fluid plays an important role in maintaining the large strain capability of the material. In some instances, the removal of the fluid can render the geological or biological material void of any hyperelastic effects. While the fluid component can be present at various scales and forms, a useful first approximation would be to treat the material as hyperelastic where the fabric can experience large strains consistent with a hyperelastic material and an independent scalar pressure describes the pore fluid response. The flow of fluid within the porous skeleton is defined by Darcy's law for an isotropic material, which is formulated in terms of the relative velocity between the pore fluid and the porous skeleton. It is assumed that the form of Darcy's law remains unchanged during the large strain behaviour. This approach basically extends Biot's theory of classical poroelasticity to include finite deformations. The developments are used to examine the poro-hyperelastic behaviour of certain one-dimensional problems.  相似文献   

8.
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for study- ing the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and tough- ness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their single- component counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Single- component and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer con- centration was demonstrated for all systems. Alginate hydro- gels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhib- ited a combination of the mechanical properties of the con- stituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment.  相似文献   

9.
Bigels are two-phase systems in which each phase (organic or aqueous) is structured using a specific gelator. Currently, these systems are widely investigated, mainly as matrices for controlled drug delivery, because they possess the advantages of both organogels and hydrogels and are very stable owing to the structuration of the dispersing phase. A deeper knowledge of the relationship between macroscopic properties and microscopic parameters seems necessary to aim at designing materials with specific rheological properties and suitable for specific uses. From a rheological point of view, bigels can be considered as composite materials in which a structured system (organogel or hydrogel, according to the desired use) is dispersed in a gelled continuous phase. In the present paper, a number of rheological models, already proposed in literature for composite systems, were used to relate the bigel complex modulus to the rheological properties of dispersed and continuous phase and to their volumetric ratio. It was observed that these models are not able to describe properly bigel behaviour, probably owing to some theoretical assumptions such as the uniform distribution of spherical particles. An empirical modification of a literature model, proposed to take into account some peculiarities of bigels, yields an improvement of fitting even if further investigations are necessary to better understand the effects of particle size distribution and morphology on observed properties.  相似文献   

10.
Viscoplasticity is characterized by a yield stress, below which the materials will not deform and above which they will deform and flow according to different constitutive relations. Viscoplastic models include the Bingham plastic, the Herschel-Bulkley model and the Casson model. All of these ideal models are discontinuous. Analytical solutions exist for such models in simple flows. For general flow fields, it is necessary to develop numerical techniques to track down yielded/unyielded regions. This can be avoided by introducing into the models a regularization parameter, which facilitates the solution process and produces virtually the same results as the ideal models by the right choice of its value. This work reviews several benchmark problems of viscoplastic flows, such as entry and exit flows from dies, flows around a sphere and a bubble and squeeze flows. Examples are also given for typical processing flows of viscoplastic materials, where the extent and shape of the yielded/unyielded regions are clearly shown. The above-mentioned viscoplastic models leave undetermined the stress and elastic deformation in the solid region. Moreover, deviations have been reported between predictions with these models and experiments for flows around particles using Carbopol, one of the very often used and heretofore widely accepted as a simple “viscoplastic” fluid. These have been partially remedied in very recent studies using the elastoviscoplastic models proposed by Saramito.  相似文献   

11.
Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible,however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.  相似文献   

12.
In this paper we describe how to construct polyacrylamide hydrogels to study the processes linked with hydraulic fracturing. These transparent, linearly elastic and brittle gels permit fracturing at low pressures and speeds allowing accurate measurements to be obtained. In the context of hydraulic fracturing, the broad range of modulus and fracture energy values that are attainable allow experimental exploration of particular regimes of importance. We also describe how material properties may be deduced from hydraulic fracturing experiments. Lastly, we analyse the fracture surface patterns that emerge from fluid-driven cracks occurring within the medium. These patterns are similar to those that have been observed in other materials and we comment on their fractal-like nature.  相似文献   

13.
Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with high-precision to measure the mechanical properties of soft materials, where the shear modulus and Poisson's ratio of the materials can be obtained by analyzing the load–relaxation curve. We have validated the accuracy and stability of the system by comparing the measured mechanical properties of a polyethylene glycol sample with that obtained from a commercial instrument. The mechanical properties of another typical polydimethylsiloxane sample submerged in heptane are measured by using conical and spherical indenters, respectively. The measured values of shear modulus and Poisson's ratio are within a reasonable range.  相似文献   

14.
Since 1942 Archie??s law is used every day to estimate, from electrical measurements, the quantity of oil present in oil fields. In this article, we perform the first experimental analysis of electric conductivity in well controlled models of porous media. We used microfluidic networks (called micromodels in the oil industry jargon), incorporating thousands of pores, with controlled wettability. Different electrode and pore geometries are considered. In all cases the evolution of the conductivity with the conductive fluid fraction (??saturation??) clearly reveals the presence of percolation thresholds, signaling that as the fraction of the conductive fluid decreases below some critical value, there are no more pathways involving only channels entirely filled with the conductive fluid that connect the electrodes. This behavior is observed in all cases, for all the network/electrode geometries and wetting properties we investigated, and is consequently likely to reflect a genuine behavior for microfluidic ??2D?? networks. The existing models??based on percolation theory or on mean field approach??reproduce correctly the structure of this behavior, but generally at a semi-quantitative level. The most successful case is obtained with the effective medium theory (EMT) model, with drainage and perpendicular electrodes. This outcome suggests that, despite the complexity of these systems, very simple models can describe correctly the physics of the system. Nonetheless, more precise modeling requires case-by-case studies. Our results are consistent with the current body of knowledge accumulated for decades on three-dimensional samples. The key point is that in 3D systems, owing to topological reasons, the threshold is extremely low in terms of water saturations. Archie??s law completely neglects the threshold effect. Nonetheless the percolation threshold should not be overlooked, and modeling should take this aspect systematically into account, as it is already done by several investigators.  相似文献   

15.
In this work, we investigate the accuracy of some physical models that are frequently used to describe and interpret dispersive mixing and mass transfer in compositional reservoir simulation. We have designed a quaternary analog fluid system (alcohol?Cwater?Chydrocarbon) that mimics the phase behavior of CO2-hydrocarbon mixtures at high pressure and temperature. A porous medium was designed using PolyTetraFlouroEthylene (PTFE) materials to ensure that the analog oil acts as the wetting phase, and the properties of the porous medium were characterized in terms of porosity, permeability and dispersivity. Relative permeability and interfacial tension (IFT) measurements were also performed to delineate interactions between the fluid system and the porous medium. The effluent concentrations from two-component first-contact miscible (FCM) displacement experiments exhibit a tailing behavior that is attributed to imperfect sweep of the porous medium: A feature that is not captured by normal dispersion models. To represent this behavior in displacement calculations, we use dual-porosity (DP) models including mass transfer between flowing and stagnant porosities. Two 4-component two-phase displacement experiments were performed at near-miscible and multicontact miscible (MCM) conditions and the effluent concentrations were interpreted by numerical calculations. We demonstrate that the accuracy of our displacement calculations relative to the experimental observations is sensitive to the selected models for dispersive mixing, mass transfer between flowing and stagnant porosities, and IFT scaling of relative permeability functions. We also demonstrate that numerical calculations substantially agree with the experimental observations for some physical models with limited need for model parameter adjustment. The combined experimental and modeling effort presented in this work identifies and explores the impact of a set of physical mechanisms (dispersion and mass transfer) that must be upscaled adequately for field-scale displacement calculations in DP systems.  相似文献   

16.
This paper describes flow and heat transfer characteristics of laminar mixed-convection flows of water with sub-millimeter bubbles in a vertical channel. We use thermocouples and a particle tracking velocimetry technique for the temperature and velocity measurements. The working fluid used is tap water, and hydrogen bubbles generated by electrolysis of the water are used as the sub-millimeter bubbles. The Reynolds number of the main flow ranges from 100 to 200. The ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection (the heat transfer coefficient ratio) ranges from 1.24 to 1.38. The heat transfer coefficient ratio decreases with the increase in the Reynolds number. We conclude from velocity measurements that this decrease is mainly caused by a decrease in the advection effect due to sub-millimeter bubbles.  相似文献   

17.
多胞材料的力学行为   总被引:7,自引:0,他引:7  
多胞材料具有独特的力学性质,其工程应用日益增加.人造多胞材料可以分为蜂窝材料和泡沫材料两类.本文介绍了这两类材料在不同载荷条件下力学行为的研究概况.对于某些天然材料(木材和松质骨)的多胞结构及其模型也作了简要介绍.  相似文献   

18.
多胞材料的力学行为   总被引:9,自引:1,他引:8  
华云龙  余同希 《力学进展》1991,21(4):457-469
多胞材料具有独特的力学性质,其工程应用日益增加.人造多胞材料可以分为蜂窝材料和泡沫材料两类.本文介绍了这两类材料在不同载荷条件下力学行为的研究概况.对于某些天然材料(木材和松质骨)的多胞结构及其模型也作了简要介绍.   相似文献   

19.
The distributions of velocity and their fluctuations, the steady wave of free surface and the presence of air bubbles can significantly influence the extent to which useful resistance measurements can be obtained from ship models in circulating water channels. This paper describes a. circulating water channel and experimental techniques which allowed accurate measurements of the resistance of small models and the extrapolation of the results to ship hulls.  相似文献   

20.
苏祥龙  许文祥  陈文 《力学学报》2017,49(5):1020-1028
非牛顿流体具有复杂的流变特性,揭示该流变特性可以更加合理地指导非牛顿流体在工农业生产中的应用.经典的非牛顿流体本构模型往往形式复杂,仅能应用于某些特定的情况.分数阶导数模型具有参数少和形式简单的特点,己成功地应用于描述非牛顿流体的运动.Hausdorff分形导数作为一个备选的建模方法,相比分数阶导数具有更简单的形式以及更高的计算效率.本文基于Hausdorff分形导数改进现有牛顿黏性模型,提出分形黏壶模型.通过研究分形黏壶在常应变率下表观黏度的变化情况,以及在加、卸载条件下的蠕变及恢复特性,发现分形黏壶模型适合于描述具有黏弹性的非牛顿流体(本文称之为分形流体).结合连续性方程及运动微分方程,推导出分形流体在平行板间层流的基本方程.按是否拖动上板和是否存在水平的压力梯度分为3种工况,分别用数值方法计算这3种工况下流速在板间的分布及其随时间变化的情况.通过分析不同工况下的流速分布,发现水平的压力梯度会改变流速随时间变化的形状,且会推迟流速到达稳定的时间.在水平压力梯度不存在的情况下,不同阶数的分形流体具有相同的流速分布或是演变过程.另外,在水平压力梯度存在的情况下,上板速度不影响不同阶数分形流体间稳定速度的差值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号