首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Novel polymeric membrane electrode (PME) and coated graphite electrode (CGE) for nickel ion were prepared based on 2,9-(2-methoxyaniline)2-4,11-Me2-[14]-1,4,8,11-tetraene-1,5,8,12-N4 as a suitable neutral ionophore. The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), 1-chloronaphthalene (CN) and tri-n-butylphosphate (TBP) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of I:NaTPB:TBP:PVC in the ratio 6:4:100:90 (w/w; mg). The electrodes exhibit Nernstian slopes for Ni2+ ions over wide concentration ranges of 4.6 × 10?7–1.0 × 10?1 M for PME and 7.7 × 10?8–1.0 × 10?1 M for CGE with limits of detection of 2.7 × 10?7 M for PME and 3.7 × 10?8 M for CGE. The response time for PME and CGE was found to be 10 and 8 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0–8.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The coated graphite electrode was used as an indicator electrode in the potentiometric titration of nickel ion with EDTA and in direct determination in different fruit juices and wine samples.  相似文献   

2.
Tyrosine (Tyr) was quantitated with high sensitivity and selectivity in the presence of uric acid (UA) using a carbon paste electrode modified with multi-walled carbon nanotubes. Tyr and UA were catalytically oxidized with diffusion-controlled characteristics. They were determined simultaneously by differential pulse voltammetry with a potential difference of 350 mV. The electrocatalytic currents increase linearly with Tyr and UA concentrations 4×10?7?1×10?4 M and 3×10?7?2×10?4 M. Their detection limits were 1×10?7 and 5.1×10?8 M respectively. In the presence of sodium dodecyl sulfate the Tyr detection limit improved from 1×10?7 to 6.9×10?8 M. The electrode was successfully used to quantitate Tyr and UA in serum.   相似文献   

3.
Flavoxate hydrochloride, 2-piperidinoethyl 3-methyl-4-oxo-2-phenyl-4-H-chromene-8-carboxylate, is a smooth muscle antispasmodic. Its electrochemical behavior was studied at the mercury electrode in buffered solutions containing 30% (v/v) methanol using dc-polarography, differential-pulse polarography, cyclic voltammetry, and linear sweep-and square-wave adsorptive stripping voltammetry. Sensitive and precise procedures were developed for determination of bulk flavoxate hydrochloride and in the pharmaceutical formulation Genurin® S.F, without sample pretreatment or extraction. Limits of quantitation (LOQ) of 1 × 10?5, 5 × 10?6, 1 × 10?8 and 1 × 10?9 M flavoxate hydrochloride were achieved by dc-polarography, differential-pulse polarography, linear sweep and square-wave adsorptive stripping voltammetric, respectively.   相似文献   

4.
This paper examined for the first time, the possibilities of the usage of a boron-doped diamond electrode for the redox behavior of rutin using cyclic and adsorptive stripping voltammetry. The cyclic voltammograms showed a pair of redox peaks at lower potentials followed by an irreversible oxidation peak at higher positive potential. Using square-wave adsorptive stripping voltammetry, the compound yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at +0.48 V (vs. Ag/AgCl) (after 60 s accumulations at a fixed potential of 0.2 V). The calibration curve was linear in the concentration range from 0.01 µg mL?1 to 0.1 µg mL?1 (1.64×10?8 M ? 1.64×10?7 M). A detection limit of 0.0017 µg mL?1 (2.78×10?9 M) was observed without any chemical modifications and electrochemical surface pretreatments. As an example, the practical applicability of boron-doped diamond electrode was tested with the measurement of rutin in dietary supplement products.   相似文献   

5.
Development of a composite multiwalled carbon nanotube (MWNT) polyvinyl chloride (PVC) with benzo-15-crown-5 (B15C5) as ionophore sensor responsive to uranyl ion is described. The composite MWNT-PVC membrane containing the active ingredients was casted on the surface of a graphite rod. The sensor incorporates B15C5 as electroactive material, ortho-nitrophenyl octyl ether (o-NPOE) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response over the concentration range of 1 × 10?1 to 1 × 10?7 M with a slope of 29.9 ± 0.4 mV per decade. The detection limit of this electrode was found to be 5.4 × 10?8 M and the working pH range is from 2.5 to 4.5. Interference from many inorganic cations viz. Na+, K+, Sr2+, Zn2+ and Fe3+ is negligible for the sensor. Application to the determination of uranium in ores and effluent samples gives results with good correlation which are comparable with data obtained by inductively coupled plasma atomic emission spectrometry. The electrode has been characterized using surface techniques.  相似文献   

6.
A glassy carbon electrode (GC) containing multiwalled functionalized carbon nanotubes (MWCNTs) immobilized within a dihexadecylhydrogenphosphate film (DHP) is proposed as a nanostructured platform for determination of methotrexate (MTX) concentration (a drug used in cancer treatment) using differential pulse adsorptive stripping voltammetry (DPAdSV). The voltammograms for a MTX solution using MWCNTs-DHP/GC electrode presented an oxidation peak potential at 0.98 V vs. Ag/AgCl (3.0 mol L?1 KCl) in a 0.1 mol L?1 sulphuric acid. The apparent heterogeneous electron transfer rate constant of 0.46 s?1 was calculated. The recovery area of 2.62×10?9 mol cm2 was also obtained. Under the optimal experimental conditions, the analytical curve was linear in the MTX concentration range from 5.0×10?8 to 5.0×10?6 mol L?1, with a detection limit of 3.3×10?8 mol L?1. The MWCNTs-DHP/GC electrode can be easily prepared and was applied for the determination of MTX in pharmaceutical formulations, with results similar to those obtained using a high-performance liquid chromatography comparative method.   相似文献   

7.
The use of square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) for the analytical determination of ambazone in urine samples and pharmaceutical formulations is described. A single reduction peak in Britton-Robinson buffer at pH 4.0 was detected at about ?1.4 V versus Ag/AgCl. Mechanistic studies have shown that the compound can act as an electrocatalyst. The method was validated. The analytical curve was linear in the concentration range from 1.0×10?9 to 1.0×10?7 mol L?1. The detection and quantification limits were found to be 3.0×10?10 mol L?1 and 1.0×10?9 mol L?1, respectively. The proposed method was successfully applied to ambazone determination in real samples.   相似文献   

8.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

9.
The construction and performance characteristics of polymeric membrane electrodes based on neutral ionophore 5,5′‐(5,5′‐(benzo[c][1,2,5]thiadiazole‐4,7‐diyl)bis(thiophene‐5,2‐diyl))bis‐(N1,N1,N3,N3‐tetraphenylbenzene‐1,3‐diamine) (L) for quantification of cadmium ions, are described. Effect of plastisizers dibutylpthalate (DBP), tri‐n‐butylphosphate (TBP), dioctylpthalate (DOP), o‐nitrophenyloctyl ether (o‐NPOE), 1‐chloronaphthalene (CN) and ionic additives sodium tetraphenylborate (NaTPB), potassium tetrakis p‐(chlorophenyl)borate (KTpClPB) was studied. Best performance was obtained with the membrane having a composition L?:?PVC?:?DBP?:?NaTPB?≡?2?:?37?:?59?:?2 (w/w; mg). The membrane electrode exhibits Nernstian response in the concentration range 6.3?×?10?8 to 1.0?×?10??1?mol?L?1 with detection limit 3.6?×?10?8?mol?L?1 and is not affected by H+ ions over a wide pH range 3.0–10.0. The electrode possess a fast response time of 10?s and shelf life period of 3 months. The analytical utility of the proposed electrode has demonstrated by its application in the determination of cadmium in water, medicinal plants and soil samples. It could also be used successfully as an indicator electrode in the potentiometric titration of Cd2+ with EDTA (ethylenediaminetetraacetic acid).  相似文献   

10.
The electro-reduction of tolmetin at the hanging mercury drop electrode was studied in different supporting electrolytes using cyclic voltammetry and square-wave stripping voltammetry techniques. Voltammograms of tolmetin exhibited a single well-defined 2-electron irreversible cathodic peak in media of pH < 4, which may be attributed to reduction of the >C=O double bond of the analyte molecule. Adsorption of tolmetin onto the surface of the hanging mercury electrode was identified and each adsorbed tolmetin molecule was found to occupy an area of 0.23 nm2. A square-wave adsorptive cathodic stripping voltammetric procedure was described for the direct determination of tolmetin in bulk form and pharmaceutical formulation (Rumatol® capsules) with a limit of quantitation of 2 × 10?9 M and a mean percentage recovery of 98.35 ± 1.21% to 99.57 ± 1.23. Moreover, the described procedure was successfully applied for the direct assay of tolmetin in spiked human serum without pretreatment or extraction prior to the analysis while a quantitation limit of 5 × 10?9 M tolmetin was achieved.   相似文献   

11.
A new all plastic sensor for Co2+ ions based on 2-amino-5 (hydroxynaphtyloazo-1′)-1,3,4 thiadiazole (ATIDAN) as ionophore was prepared. The electrode exhibits a low detection limit of 1.5 × 10−6 mol L−1 and almost theoretical Nernstian slope in the activity range 4.0 × 10−6–1 × 10−1 mol L−1 of cobalt ions. The response time of the sensor is less than 10 s and it can be used over a period of 6 months without any measurable divergence in potential. The proposed sensor shows a fairly good selectivity for Co(II) over other metal ions. The electrode was successfully applied for determination of Co2+ in real samples and as an indicator electrode in potentiometric titration of Co2+ ions with EDTA.   相似文献   

12.
Betamethasone sodium phosphate (BMNaP) has been employed as an electroactive material in the design of an ion-selective electrode (ISE). The electrode incorporates PVC membrane with betamethasone sodium phosphate-lidocaine ion pair complex. The influences of membrane composition, temperature, pH of the test solution, and the interfering ions on the electrode performance were investigated. The sensor exhibits a Nernstian response for betamethasone sodium phosphate ions over a relatively wide concentration range (1.0 × 10?1 to 1.0 × 10?5 M) with a slope of 28.4 ± 0.9 mV per decade at 25°C. It can be used in the pH range 4.0–10.0. The isothermal temperature coefficient of this electrode amounted to ?0.0008 V/°C. The membrane sensor was successfully applied to the determination of betamethasone sodium phosphate in pharmaceutical products.  相似文献   

13.
Complex formation equilibria of 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl) propionic acid (BIMP) with metal ions Cu2+, Ni2+, Co2+, Zn2+, Mn2+ and Fe2+ were investigated. ACC forms 1:1 and 1:2 complexes in addition to the hydrolysed form of the 1:1 complex, except in the case of Mn2+ and Fe2+, where the hydrolysed complex is not formed. BIMP forms 1:1 and 1:2 complexes in addition to the hydrolsed form of the 1:1 complex in the case of Mn2+ and Cu2+, however the hydrolysed complex is not detected for Ni2+, Co2+, Zn2+ and Fe2+. The concentration distribution diagrams of the complexes were determined. The Fe2+-complex with BIMP is exothermic and the thermodynamic parameters were calculated. The effect of organic solvent on the acid dissociation constants of 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl) propionic acid (BIMP) and the formation constants of Fe2+ complexes were investigated. Fe2+ forms a mixed-ligand complex with ACC and BIMP with stoichiometric coefficients 1:1:1. The formation constant was determined. The ternary complex is enhanced by back donation from the negatively charged 1-aminocyclopropane carboxylate to the π-system of BIMP. From the concentration distribution diagram, the ternary complex prevails in the physiological pH range.   相似文献   

14.
The present work describes the development of a nanocomposite system and its application in construction of a new amperometric biosensor applied in the determination of total polyphenolic content from propolis extracts. The nanocomposite system was based on covalent immobilization of laccase on functionalized indium tin oxide nanoparticles and it was morphologically and structural characterized. The casting of the developed nanocomposite system on the surface of a screen-printed electrode was used for biosensor fabrication. The analytical performance characteristics of the settled biosensor were determined for rosmarinic acid, caffeic acid and catechol (as laccase specific substrate). The linearity was obtained in the range of 1.06×10?6 ? 1.50×10?5 mol L?1 for rosmarinic acid, 1.90×10?7 ? 2.80×10?6 mol L?1 for caffeic acid and 1.66×10?6 ? 7.00×10?6 mol L?1 for catechol. A good sensitivity of amperometric biosensor 141.15 nA µmol?1 L?1 and fair detection limit 7.08×10?8 mol L?1 were obtained for caffeic acid. The results obtained for polyphenolic content of propolis extracts were compared with the chromatographic data obtained by liquid-chromatography with diode array detection.   相似文献   

15.
In this work, a flow-injection spectrophotometric method for dipyrone determination in pharmaceutical formulations was developed. Dipyrone sample solutions were injected into a carrier stream of deionized water and the reaction was carried out in a solid-phase reactor (12 cm, 2.0 mm i.d.) packed with Cu3(PO4)2(s) entrapped in a matrix of polyester resin. The Cu(II) ions were released from the solid phase reactor by the formation of Cu(II)-(dipyrone)n complex. When the complex is released, it reacts with 0.02% m/v alizarin red S in deionized water to produce a Cu(VABO3)3 complex whose absorbance was monitored at 540 nm. The calibration graph was linear over the range 5.0×10?5–4.0×10?4 mol L?1 with a detection limit of 2.0×10?5 mol L?1 and relative standard deviation for 10 successive determinations of 1.5% (2.0×10?4 mol L?1 dipyrone solution). The calculated sample throughput was 60 h?1. The column was stable for at least 8 h of continuous use (500 injections) at 25°C. Pharmaceutical formulations were analyzed and the results from an official procedure measurement were compared with those from the proposed FIA method in order to validate the latter method.   相似文献   

16.
A novel and effective potentiometric sensor for the rapid determination of Cd2+ based on carbon paste electrode consisting of the room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate, multiwalled carbon nanotubes, silica nanoparticles and ionophore was constructed. The prepared composite has a low potential drift, high selectivity and fast response time, which leads to a more stable potential signal. A linear dynamic range of 4.50×10?9–1.00×10?1 mol L?1 with a detection limit of 2.00×10?9 mol L?1 was obtained. The modified electrode was successfully applied to the accurate determination of trace amounts of Cd2+ in environmental and biological samples.  相似文献   

17.
A sol‐gel electrode, based on 6‐(4‐nitrophenyl)‐2‐phenyl‐4,4‐dipropyl‐3,5‐diaza‐bicyclo [3,1,0] hex‐2‐ene (NPDBH) as a neutral ionophore, was successfully developed for the detection of Sr2+ in aqueous solutions. Theoretical calculations confirmed NPDBH selectivity toward strontium in comparison with some other metal ions. The electrode responds to Sr2+ ion with a sensitivity of 29.1±0.4 mV/decade over the range 8.0×10?7–1.0×10?1 M. Selectivity coefficients determined by matched potential method (MPM) indicate high selectivity for strontium ions. The electrode has a fast response time of 11 s and a working pH range of 3.0–10.0. The sol‐gel electrode shows detection limit of 7.5×10?8 M.  相似文献   

18.
Solution studies showed a selective interaction between the new synthesized ionophore, 2-[(thiophen-2-yl)methyleneamino]isoindoline-1,3-dione (TMID) and Fe(III) ion. Therefore, TMID was used as an iron selective ion-carrier in a plasticized liquid membrane sensor. The linear response range of the proposed electrode was 1.0 × 10?6–1.0 × 10?2 M. The Nernstian slope of 20.1 ± 0.3 mV/decade, and a detection limit of 5 × 10?7 M was obtained. The sensor could be used in the pH range of 2.3–4.8, and the response time was about 10 s. The lifetime of the electrode was at least 7 weeks. The sensor accuracy was investigated in two ways: (i) with the potentiometric titration of a Fe3+ solution with EDTA and (ii) with Fe(III) monitoring in some cationic mixtures. Finally, the newly fabricated electrode was effectively applied as an indicator electrode for the direct Fe3+ determination in real samples.  相似文献   

19.
Studies on complex formation of tris(3‐(2‐hydroxybenzophenone)propyl)amine (THPA) with a number of metal ions in acetonitrile solution revealed the occurrence of a selective 1 : 1 complexation of the proposed ligand with Sn2+ ion. Consequently, THPA was used as a suitable neutral ionophore for the preparation of a polymeric membrane‐selective electrode. The electrode exhibits a Nernstian behavior with a slope of 29.4±0.3 mV per decade and a detection limit of 2.0×10?7 M. It also showed a good selectivity for Sn2+ ions in comparison with some of group A and B metal ions over a wide concentration range of 5.0×10?7–1.0×10?1 M. Improved selectivity was achieved compared to the best selectivity recently reported by other authors for tin(II). The electrode was successfully applied to the determination of Sn2+ ion in waste water and various canned products.  相似文献   

20.
A novel macrocyclic calix[4]arene derivative was examined as an ionophore for ion‐selective polymeric membrane electrode toward Cu+2 ions. The sensor showed a near Nernstian response for Cu(II) ions over a concentration range from 8.1×10?6 to 1.0×10?2 mol L?1 with a slope of 34.2±0.4 mV per concentration decade in an acidic solution (pH 5). The limit of detection was 0.47 µg mL?1. It had a response time of <20 s and can be used for at least 3 months without any divergence in potentials. The influence of plasticizer as well as the amount of lipophilic anionic site additive in the sensing membrane was discussed. It was shown that membrane electrodes formulated with the ionophore and appropriate anionic additive exhibited enhanced potentiometric response toward Cu2+ over all other cations tested. Since selectivity toward Cu2+ ions is decreased in the presence of high amount of the anionic additive, the ionophore can function as neutral carriers within the organic membrane phase. Validation of the assay method revealed good performance characteristics, including long life span, good selectivity for Cu2+ ions over a wide variety of other metal ions, long term response stability, and high reproducibility. The sensors were used for direct measurement of copper content in different rocks collected from different geological zones. The results agreed fairly well with data obtained using atomic absorption spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号