首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金波 《力学季刊》1997,18(2):111-117
本文用积分变换及Cagniard-De Hoop方法获得静刚性分布脉冲载荷作用下半空间表面中心点位移的解析表达式。利用此闭合表达式可以进一步研究土五结构物的动力相互作用问题及动力接触问题。  相似文献   

2.
This paper examines the indentation of an elastic body by a rigid spherical inclusion. In contrast to conventional treatments where the contact between a rigid inclusion and the elastic medium is regarded as being perfectly bonded, we examine the influence of non-classical interface conditions including frictionless bilateral contact, separation and Coulomb friction on the load–displacement behaviour of the spherical rigid inclusion. Both analytical methods and boundary element techniques are used to examine the inclusion/elastic medium interaction problems. This paper also provides a comprehensive review of non-classical interface conditions between inclusions and the surrounding elastic media.  相似文献   

3.
A linear contact problem of an elastic half space with rigid punches ε-periodically situated on a bounded part of the boundary of the elastic solid is investigated. Using the method of homogenization theory and the method of matched asymptotic expansions, the leading terms of the asymptotic solution are constructed as ε→0. The general capacity of the contact spot is introduced and some its properties are described.  相似文献   

4.
This paper considers the contact problem of interaction of a rigid die, a rigid band, and a rigid insert with a viscoelastic layer, a viscoelastic cylinder, and viscoelastic space with a cylindrical cavity, respectively. It is assumed that the die, band, and insert move at a constant velocity along the boundaries of the viscoelastic bodies. In the first stage, the displacement of the boundaries of the above-mentioned bodies is determined as a function of the applied normal loads ignoring friction in the contact area. In the second stage, integral equations are derived to determine contact pressure in the contact problems. In the third stage, approximate solutions of the integral equations are constructed using a modified Multhopp-Kalandia method.  相似文献   

5.
Contact between curved rough bodies is an important engineering problem. The paper addresses the problem in its simplest form where a smooth rigid cylinder presses down an elastic half space bounded by a plane of uniformly spaced cylindrical asperities. Keeping the separation between the bodies unchanged the problem is inverted and solved using the method of complex variables. As the asperities deform as well as move as rigid bodies, contact lengths and positions develop non-symmetrically with respect to the initial axes of symmetry of the asperities. The resulting local contact pressures are non-Hertzian and the normal load for a given contact area is greater than that estimated using a priori Hertzian pressure profiles.  相似文献   

6.
The solutions of contact problems on a soft or rigid coating of an elastic half-plane are of great practical interest. Accordingly, the present paper is divided into two parts: in the first part, we consider the problem of interaction between a rigid biquadratic die and an elastic half-plane through a thin soft coating; in the second part, we consider the problem of interaction between a rigid plane die and an elastic half-plane through a thin rigid coating. We derive integral equations for the problems under study and construct their approximate solutions by a regular asymptotic method. Earlier, the question of studying such problems was posed, for example, in [1–3]. Here we use these results to a large extent.  相似文献   

7.
The general axisymmetric double contact problem for an elastic layer pressed against a half space by an elastic stamp is considered. The problem is solved under the assumptions that the three materials have different elastic properties, the contact along the interfaces is frictionless and only compressive normal tractions can be transmitted across the interfaces, and, in the case of the elastic stamp, the local radius of curvature of the stamp is large compared to the stamp-layer contact radius. The problem is reduced to a system of singular integral equations in which the contact pressures are the unknown functions. The solution is obtained and extensive numerical results are given for three stamp geometries, namely, rigid and elastic spherical stamps, and a flat-ended rigid cylindrical stamp. The results show that in the case of a flat-ended rigid cylindrical stamp the radius b of the contact area between the layer and the subspace is independent of the magnitude P of the total transmitted load and in all other cases b will depend on P.  相似文献   

8.
A numerical integral scheme based on Fourier transformation approach is employed to investigate the effect of friction on subsurface stresses arising from the two-dimensional sliding contact of two multilayered elastic solids. The analysis incorporates bonded and unbonded interface boundary conditions between the coating layers. Two line contact problems are presented. The first one is the contact problem between a rigid cylinder and a two-layer half space and the second one is the indentation of a multilayered elastic half-space by a flat rigid punch. The effects of the surface coating on the contact pressure distribution and subsurface stress field are presented and discussed.  相似文献   

9.
The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine- matics through translational and rotational deformations, and a modified constitutive relation for the rotational deformation is proposed between the couple stress and the curvature tensor. Thus, the balance equations of momentum and moment are used for the motion equations of the body. The floating frame of reference formulation is applied to the elastic body that conducts rotations about a fixed axis. The motion-deformation coupled model is developed in which three types of inertia forces along with their incre- ments are elucidated. The finite element governing equations for the dynamic analysis of the elastic body under large rotations are subsequently formulated with the aid of the constrained variational principle. A penalty parameter is introduced, and the rotational angles at element nodes are treated as independent variables to meet the requirement of C1 continuity. The elastic body is discretized through the isoparametric element with 8 nodes and 48 degrees-of-freedom. As an example with an application of the motion- deformation coupled model, the dynamic analysis on a rotating cantilever with two spatial layouts relative to the rotational axis is numerically implemented. Dynamic frequencies of the rotating cantilever are presented at prescribed constant spin velocities. The maximal rigid rotational velocity is extended for ensuring the applicability of the linear model. A complete set of dynamical response of the rotating cantilever in the case of spin-up maneuver is examined, it is shown that, under the ultimate rigid rotational velocities less than the maximal rigid rotational velocity, the stress strength may exceed the material strength tolerance even though the displacement and rotational angle responses are both convergent. The influence of the cantilever layouts on their responses and the multiple displacement trajectories observed in the floating frame is simultaneously investigated. The motion-deformation coupled model is surely expected to be applicable for a broad range of practical applications.  相似文献   

10.
Nonlinear dynamics of an elastic rod with frictional impact   总被引:2,自引:0,他引:2  
A model is presented for the impact with friction of a flexible body in translation and rotation. This model consists of a system of nonlinear differential equations which considers the multiple collisions as well as frictional effects at the contacting end, and allows one to predict the rigid and elastic body motion after the impact. The kinetic energy is derived by utilizing a generalized velocity field theory for elastic solids. The model uses a dry coefficient of friction and a nonlinear contact force. We introduce a finite number of vibrational modes to take into account the vibrational behavior of the body during impact. The vibrations, the multiple collisions, and the angle of incidence angle, are found to be important factors for the kinematics of frictional impact. Analytical and experimental results were compared to establish the accuracy of the model.  相似文献   

11.
Quarter space problems have many useful applications wherever an edge is involved, and solution to the related contact problem requires extension to the classical Hertz theory. However, theoretical exploration of such a problem is limited, due to the complexity of the involved boundary conditions. The present study proposes a novel numerical approach to compute the elastic field of two quarter spaces, joined so that their top surfaces occupy the same plane, and indented by a rigid sphere with friction. In view of the equivalent inclusion method, the joined quarter spaces may be converted to a homogeneous half space with properly established eigenstrains, which are analyzed by our recent half space-inclusion solution using a three-dimensional fast Fourier transform algorithm. Benchmarked with finite element analysis the present method of solution demonstrates both accuracy and efficiency. A number of interesting parametric studies are also provided to illustrate the effects of material combinations, contact location and friction coefficient showing the deviation of the solution from Hertz theory.  相似文献   

12.
高速荷载下多孔饱和地基的动力响应   总被引:8,自引:0,他引:8  
金波 《力学季刊》2004,25(2):168-174
研究高速荷载作用下梁与多孔饱和半空间的动力响应。由Fourier变换求解多孔饱和固体的动力基本方程,根据梁与半空间的接触条件得出多孔饱和半空间上梁的垂直位移的表达式。文中的数值算例考虑了荷载移动速度对梁的动力位移的影响,并与相应的弹性半空间问题作了对比。从算例中可以发现荷载移动速度对动力位移有很大的影响,当移动速度与半空间的表面波速相近时,地面会当产生很大的振动,同时还发现当速度大于介质的剪切波速时,多孔饱和半空间上梁的动力响应与弹性半空间上梁的动力响应有很大的差别。  相似文献   

13.
This investigation is concerned with the dynamic displacements of a beam on a poroelastic half space under a periodic oscillating load of constant velocity. The governing equations for the proposed analysis are solved using Fourier transform. The expression for the vertical displacement is obtained according to the contact condition between a beam and a half space. The effects of the moving velocity and vibration frequency of the load on the dynamic displacement are considered in the numerical examples. The results show that the load velocity has significant influence on dynamic displacement. It is also noted that large differences exist between the dynamic responses for a beam on a poroelastic half space and on an elastic half space when the load velocity is larger than the shear wave speed of the medium. The reported work is supported by the National Natural Science Foundation of China (Project No. 10372073).  相似文献   

14.
We present a (noncanonical) Hamiltonian model for the interaction of a neutrally buoyant, arbitrarily shaped smooth rigid body with N thin closed vortex filaments of arbitrary shape in an infinite ideal fluid in Euclidean three-space. The rings are modeled without cores and, as geometrical objects, viewed as N smooth closed curves in space. The velocity field associated with each ring in the absence of the body is given by the Biot–Savart law with the infinite self-induced velocity assumed to be regularized in some appropriate way. In the presence of the moving rigid body, the velocity field of each ring is modified by the addition of potential fields associated with the image vorticity and with the irrotational flow induced by the motion of the body. The equations of motion for this dynamically coupled body-rings model are obtained using conservation of linear and angular momenta. These equations are shown to possess a Hamiltonian structure when written on an appropriately defined Poisson product manifold equipped with a Poisson bracket which is the sum of the Lie–Poisson bracket from rigid body mechanics and the canonical bracket on the phase space of the vortex filaments. The Hamiltonian function is the total kinetic energy of the system with the self-induced kinetic energy regularized. The Hamiltonian structure is independent of the shape of the body, (and hence) the explicit form of the image field, and the method of regularization, provided the self-induced velocity and kinetic energy are regularized in way that satisfies certain reasonable consistency conditions.   相似文献   

15.
多粗糙峰弹塑性接触的有限元分析   总被引:11,自引:2,他引:9  
杨楠  陈大融 《摩擦学学报》2000,20(3):202-206
采用具有一定数目圆形粗糙峰的刚性表面对弹塑性半元限体进行压下的模型来模拟多粗糙峰接触,并用有限元法对该模型进行了弹生分析,揭示了我地接触区应力状态的影响规律,发现中心接触区的变莆主要受到一定数目邻近粗糙峰的影响,而处于较远自找影响较小,同弹性接触相比,在弹塑性接触过程中有更多的邻近粗糙对中心接触区发生作用,改变粗糙的间距、曲率半径和压下深度都会对其产生影响。  相似文献   

16.
Two mixed elasticity problems of punch indentation into a circular plate placed without clearance in a rigid cylindrical holder with smooth walls are considered. In the first problem, the plate lies without friction on a rigid base, and in the second problem, the plate is rigidly fixed to the base. The problems are solved by a method that was developed for bodies of finite dimensions and is based on the properties of closed systems of orthogonal functions. Each of the problems is reduced to two integral equations, namely, a Volterra integral equation of the first kind for the contact pressure function and a Fredholm integral equation of the first kind for the derivatives of the displacement of the plate upper surface outside the punch. The displacement function is sought as the sum of a trigonometric series and a power function with a root singularity. After truncation, the obtained illposed system of linear algebraic equation has a stable solution. A method for solving Volterra integral equations is given. The contact pressure distribution function and the dimensionless indentation force are determined. Examples of calculation of the plate interaction with the plane punch are given. Contact problems were earlier studied for a rectangle and a circular plate with a stress-free end both without taking account of their fixation [1, 2] and with regard for their fixation [3, 4]. The solution method described here was used to study the interaction of elastic hollow cylinder of finite length with a rigid bandage and a rigid insert [5, 6]. Other papers dealing with contact problems for bodies of finite dimensions, in particular, for a circular plate, should also be mentioned. In these papers, the problems under study were solved by the method of homogeneous solutions [7, 8] and by the method of coupled series-equations [9].  相似文献   

17.
This paper considers a frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by means of a rigid circular stamp. The problem is reduced to a system of singular integral equations in which the contact stresses and lengths are the unknown functions. Numerical results for the contact stresses and the contact lengths are given by depending on various fibre orientations.  相似文献   

18.
Small linear interactions affecting the propogation of waves in a linear elastic fluid are investigated. These linear interactions may occur as a result of impurities on the surface of a linear elastic fluid. These interactions are imposed on the linear wave equations which were investigated in Momoniat (Propogation of waves in a linear elastic fluid, submitted for publication) using the non-classical contact symmetry method. The occurrence of a small parameter in the wave equations under consideration in this paper makes the problem ideal for analysis using an approximate non-classical contact symmetry method. Approximate contact symmetries and approximate solutions are determined and discussed for the problems under consideration. Comparisons are made with the case of no interaction.  相似文献   

19.
The present paper examines the problems related to the axial, lateral, and rotational loading of a rigid cylindrical inclusion which is embedded in bonded contact at the boundary of an isotropic elastic half space. The rigid inclusion is modeled as a field of distributed forces which represent the normal and shear tractions that act on the inclusion-elastic-medium interface. The intensities of these distributed tractions are determined by enforcing displacement compatibility conditions at discrete locations of the interface. These compatibility conditions are derived from rigid-body displacement modes appropriate for each loading. The results derived from this numerical scheme are compared with equivalent results derived via analytical techniques which focus on the solution of the governing integral-equation schemes and other approximate-solution schemes. The numerical results presented in the paper illustrate the manner in which the generalized stiffnesses of the embedded inclusion are influenced by its geometry and Poisson's ratio of the half-space region.  相似文献   

20.
The problem of reducing the body-attached coordinate system to the reference (programmed) coordinate system moving relative to the fixed coordinate system with a given instantaneous velocity screw along a given trajectory is considered in the kinematic statement. The biquaternion kinematic equations of motion of a rigid body in normalized and unnormalized finite displacement biquaternions are used as the mathematical model of motion, and the dual orthogonal projections of the instantaneous velocity screw of the body motion onto the body coordinate axes are used as the control. Various types of correction (stabilization), which are biquaternion analogs of position and integral corrections, are proposed. It is shown that the linear (obtained without linearization) and stationary biquaternion error equations that are invariant under any chosen programmed motion of the reference coordinate system can be obtained for the proposed types of correction and the use of unnormalized finite displacement biquaternions and four-dimensional dual controls allows one to construct globally regular control laws. The general solution of the error equation is constructed, and conditions for asymptotic stability of the programmed motion are obtained. The constructed theory of kinematic control of motion is used to solve inverse problems of robot-manipulator kinematics. The control problem under study is a generalization of the kinematic problem [1, 2] of reducing the body-attached coordinate system to the reference coordinate system rotating at a given (programmed) absolute angular velocity, and the presentedmethod for solving inverse problems of robotmanipulator kinematics is a development of the method proposed in [3–5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号