首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider steady states for a class of mechanical systems with particle-disk interactions coupled to two, possibly unequal, heat baths. We show that any steady state that satisfies some natural assumptions is ergodic and absolutely continuous with respect to a Lebesgue-type reference measure and conclude that there exists at most one absolutely continuous steady state.  相似文献   

2.
We study the heat transport in systems of coupled oscillators driven out of equilibrium by Gaussian heat baths. We illustrate with a few examples that such systems can exhibit “strange” transport phenomena. In particular, circulation of heat flux may appear in the steady state of a system of three oscillators only. This indicates that the direction of the heat fluxes can in general not be “guessed” from the temperatures of the heat baths. Although we primarily consider harmonic couplings between the oscillators, we explain why this strange behavior persists under weak anharmonic perturbations.  相似文献   

3.
The quantum thermalization of the Jaynes–Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is studied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individual heat baths or a common heat bath. It is found that in the individual heat-bath case, the JC model can only be thermalized when either the two heat baths have the same temperature or the coupling of the JC system to one of the two baths is turned off. In the common heat-bath case, the JC system can be thermalized irrespective of the bath temperature and the system–bath coupling strengths. The thermal entanglement in this system is also studied. A counterintuitive phenomenon of vanishing thermal entanglement in the JC system is found and proved.  相似文献   

4.
We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths. Starting from the detailed fluctuation theorem, we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate eta is proportional to exp[Phi(eta)] where Phi(eta)=-[under summation operator]kbeta_{k}E_{k}(eta) is the excess entropy change. Here, E_{k}(eta) is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the kth heat bath whose inverse temperature is beta_{k}. This result can be easily extended to steady states maintained with other sources, e.g., particle current driven by an external force. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.  相似文献   

5.
Quantum thermalization and thermal entanglement in the open quantum Rabi model (QRM), in which a two-level system and a single-mode bosonic field are coupled to either two individual heat baths or a common heat bath, are studied. By treating the QRM as an effective multilevel system and deriving global quantum master equations in the eigenstate representation of the QRM, the physical conditions for quantum thermalization of the QRM is studied. It is found that, in the individual heat-bath case, the QRM can only be thermalized when either the two heat baths have the same temperature or the QRM is only coupled to one of the two baths. In the common heat-bath case, differently, the QRM can always be thermalized. Thermal entanglement of the QRM in both the resonant- and non-resonant coupling cases is also studied. The logarithmic negativity for the thermal state of the QRM is obtained in a wide parameter space, ranging from the low- to high-temperature limits, and from the weak- to deep-strong-coupling regimes. This work paves the way toward the study of quantum effects in nonequilibrium ultrastrongly-coupled light-matter systems.  相似文献   

6.
We determine and study the steady state of two independent two-level systems weakly coupled to a stationary non-equilibrium environment. Whereas this bipartite state is necessarily uncorrelated if the splitting energies of the two-level systems are different from each other, it can be entangled if they are equal. For identical two-level systems interacting with two bosonic heat baths at different temperatures, we discuss the influence of the baths temperatures and coupling parameters on their entanglement. Geometric properties, such as the baths dimensionalities and the distance between the two-level systems, are relevant. A regime is found where the steady state is a statistical mixture of the product ground state and of the entangled singlet state with respective weights 2/3 and 1/3.  相似文献   

7.
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.  相似文献   

8.
We study deviations from thermal equilibrium between two-level systems (TLS) and a bath by frequent and brief quantum measurements of the TLS energy-states. The resulting entropy and temperature of both the system and the bath are found to be completely determined by the measurement rate, and unrelated to what is expected by standard thermodynamical rules that hold for Markovian baths. These anomalies allow for very fast control heating, cooling and state-purification (entropy reduction) of quantum systems much sooner than their thermal equilibration time.  相似文献   

9.
The time evolution of an open system of infinitely many two-dimensional classical particles is investigated. Particles are interacting by a singular pair potentialU, and each particle is connected to a heat bath of temperatureT. The heat baths are represented by independent white noise forces and Langevin damping terms. Existence of strong solutions to the corresponding infinite system of stochastic differential equations is proved for initial configurations with a logarithmic order of energy fluctuations. Gibbs states forU at temperatureT are invariant under time evolution.  相似文献   

10.
We study the steady state of a three-level system in contact with a non-equilibrium environment, which is composed of two independent heat baths at different temperatures. We derive a master equation to describe the non-equilibrium process of the system. For the three level systems with two dipole transitions, i.e., the ΛΛ-type and V-type, we find that the interferences of two transitions in a non-equilibrium environment can give rise to non-vanishing steady quantum coherence, namely, there exist non-zero off-diagonal terms in the steady state density matrix (in the energy representation). Moreover, the non-vanishing off-diagonal terms increase with the temperature difference of the two heat baths. Such interferences of the transitions were usually omitted by secular approximation, for it was usually believed that they only take effect in short time behavior and do not affect the steady state. Here we show that, in non-equilibrium systems, such omission would lead to the neglect of the steady quantum coherence.  相似文献   

11.
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics.  相似文献   

12.
We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than \(\sqrt{L}\), and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.  相似文献   

13.
The relaxation dynamics of correlated electron transport along molecular chains is studied based on a substantially improved numerically exact path integral Monte Carlo approach. As an archetypical model, we consider a Hubbard chain containing two interacting electrons coupled to a bosonic bath. For this generalization of the ubiquitous spin-boson model, non-Boltzmann equilibrium distributions are found for many-body states. By mapping the multiparticle dynamics onto an isomorphic single particle motion, this phenomenon is shown to be sensitive to particle statistics and, due to its robustness, allows for new control schemes in designed quantum aggregates.  相似文献   

14.
15.
We study the steady-state dynamics of the Hubbard model driven out of equilibrium by a constant electric field and coupled to a dissipative heat bath. For a very strong field, we find a dimensional reduction: the system behaves as an equilibrium Hubbard model in lower dimensions. We derive steady-state equations for the dynamical mean-field theory in the presence of dissipation. We discuss how the electric field induced dimensional crossover affects the momentum resolved and integrated spectral functions, the energy distribution function, as well as the steady current in the nonlinear regime.  相似文献   

16.
We study nonequilibrium steady states of some 1-D mechanical models with N moving particles on a line segment connected to unequal heat baths. For a system in which particles move freely, exchanging energy as they collide with one another, we prove that the mean energy along the chain is constant and equal to \(\frac{1}{2} \sqrt{T_{L}T_{R}}\) where T L and T R are the temperatures of the two baths. We then consider systems in which particles are trapped, i.e., each confined to its designated interval in the phase space, but these intervals overlap to permit interaction of neighbors. For these systems, we show numerically that the system has well defined local temperatures and obeys Fourier’s Law (with energy-dependent conductivity) provided we vary the masses randomly to enable the repartitioning of energy. Dynamical systems issues that arise in this study are discussed though their resolution is beyond reach.  相似文献   

17.
Recently a novel concise representation of the probability distribution of heat conducting nonequilibrium steady states was derived. The representation is valid to the second order in the “degree of nonequilibrium”, and has a very suggestive form where the effective Hamiltonian is determined by the excess entropy production. Here we extend the representation to a wide class of nonequilibrium steady states realized in classical mechanical systems where baths (reservoirs) are also defined in terms of deterministic mechanics. The present extension covers such nonequilibrium steady states with a heat conduction, with particle flow (maintained either by external field or by particle reservoirs), and under an oscillating external field. We also simplify the derivation and discuss the corresponding representation to the full order.  相似文献   

18.
The approach to equilibrium of a finite segment of an infinite chain of harmonically coupled masses is studied in several variations. The chain is taken as completely free, or it is bound atx 0 =0; ordinary coordinates and momenta or Schrödinger variables are used to treat the dynamics; and the inital distribution of heat-bath variables is chosen to be canonical or noncanonical. Equipartition of energy is found in all cases. Brownian drifts are obtained for the free chain with ordinary variables, but when this is excluded, the equilibrium entropy is found to be canonical and extensive when the initial heat bath is canonical, but less than canonical and slightly nonextensive when the initial heat bath is noncanonical. The modifications of the entropy do not contribute to the heat capacity of the system.Supported in part by the United States Atomic Energy Commission.  相似文献   

19.
Recently, in their attempt to construct steady state thermodynamics (SST), Komatsu, Nakagawa, Sasa, and Tasaki found an extension of the Clausius relation to nonequilibrium steady states in classical stochastic processes. Here we derive a quantum mechanical version of the extended Clausius relation. We consider a small system of interest attached to large systems which play the role of heat baths. By only using the genuine quantum dynamics, we realize a heat conducting nonequilibrium steady state in the small system. We study the response of the steady state when the parameters of the system are changed abruptly, and show that the extended Clausius relation, in which “heat” is replaced by the “excess heat”, is valid when the temperature difference is small. Moreover we show that the entropy that appears in the relation is similar to von Neumann entropy but has an extra symmetrization with respect to time-reversal. We believe that the present work opens a new possibility in the study of nonequilibrium phenomena in quantum systems, and also confirms the robustness of the approach by Komatsu et al.  相似文献   

20.
One and two-dimensional oscillator systems are constructed so that individual oscillators are bound to their home positions and coupled to nearest neighbors by linear forces; both systems are treated for the case of weak coupling. The two-dimensional system has a tensor binding force that does not permit it to be decoupled into two noninteracting systems.Segments and strips are treated as thermodynamic systems in contact with a heat bath and Gaussian initial probability densities are used to compute correlations. Expressions for entropy and “temperature” are computed by relating initial system and bath variances to equilibrium temperature.Asymptotic relations for “temperature” are found that show the degree of coupling between dimensions affects the rate of approach to equilibrium, but only through the coefficient of time and not its power. Both systems approach equilibrium as t?1 rather than t?12 as predicted by continuum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号