首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A magnetic resonance imaging cardiac magnetic susceptometry (MRI-CS) technique for assessing cardiac tissue iron concentration based on phase mapping was developed. Normal control subjects (n=9) and thalassemia patients (n=13) receiving long-term blood transfusion therapy underwent MRI-CS and MRI measurements of the cardiac relaxation rate R2*. Using MRI-CS, subepicardium and subendocardium iron concentrations were quantified exploiting the hemosiderin/ferritin iron specific magnetic susceptibility. The average of subepicardium and subendocardium iron concentrations and R2* of the septum were found to be strongly correlated (r=0.96, P<.0001), and linear regression analysis yielded CIC (μg Fe/gwet tissue)=(6.4±0.4)·R2* septum (s−1) − (120±40). The results demonstrated that septal R2* indeed measures cardiac iron level.  相似文献   

2.
OBJECTIVES: The characterization of tumor vasculature is essential in studying tumor physiology. The aim of this study was to develop a new method - based on water proton MR density measurements, in combination with ultrasmall superparamagnetic iron oxide (USPIO) administration - to measure absolute blood volume (BV) in murine colon carcinoma. MATERIALS AND METHODS: MRI experiments were performed at 7 T. CPMG imaging was performed on subcutaneous murine colon carcinoma in six mice before and after administration of an USPIO blood-pool contrast agent. Density maps were obtained from the signal amplitude at TE=0 of the CPMG decay fit. Post-USPIO density maps were subtracted from pre-USPIO density maps to quantitatively yield absolute tumor BV maps. In a separate group of mice (n=6), the relative vascular area (RVA) of tumors was determined by immunohistochemistry. RESULTS: Ultrasmall superparamagnetic iron oxide administration resulted in a small decrease in the water proton MR density. The BV averaged over the six tumors was 4.6+/-1.6%. The value of the RVA measured by immunohistochemical staining was equal to 3.9+/-2.2%. CONCLUSIONS: After administration of an USPIO blood-pool agent (T(2) relaxivity > 100 mM(-1) s(-1)), the blood water protons become MRI invisible, and pixel-by-pixel BV map can be obtained by subtracting the calculated post-USPIO density map from the pre-USPIO density map. The value of absolute BV obtained with this novel MR approach is in good agreement with the value of the relative vascular measured by immunohistochemical staining.  相似文献   

3.
4.
Secreted frizzled related protein-1 (SFRP1) plays a key role in many diverse processes, including embryogenesis, tissue repair, bone formation, and tumor genesis. Previous studies have shown the effects of the SFRP1 gene on lung development using the SFRP1 knockout mouse model via histological and physiological studies. In this study, the feasibility of ADC (acquired via HP 3He) to detect altered lung structure in the SFRP1 knockout (SFRP1−/−) mice was investigated, and compared to analysis by histology. This study consisted of two groups, the wild-type (WT) mice and the knockout (KO) mice with n = 6 mice for each group. 3He ADC MRI and histology were performed on all of the animals. The global Lm values of WT and KO mice were 35.0 ± 0.8 μm and 38.4 ± 3.8 μm, respectively, which translated to an increase of 9.58% in the Lm of KO mice. The mean global ADCs for the WT and KO mice were 0.12 ± 0.01 cm2/s and 0.13 ± 0.01 cm2/s, respectively, which equated to a relative increase of 8.0% in the KO mice compared to the WT mice. In the sub-analysis of the anterior, medial and posterior lung regions, Lm increased by 10.50%, 6.66% and 11.84% in the KO mice, respectively, whereas the differences in ADC between the two groups in the anterior, medial, and posterior regions were 7.3%, 8.3%, and 4.6%, respectively. These results suggest that HP MRI measurements can be used as a suitable substitute for histology to obtain valuable information about lung geometry non-invasively. This technique is also advantageous as regional measurements can be performed, which can identify lung destruction more precisely. Most importantly, this approach extends far beyond the specific pathology analyzed in this study, as it can be applied to many other pathological conditions in the lung tissue, as well to many other embryonic studies.  相似文献   

5.
6.
7.
利用扩散加权磁共振成像技术研究了链脲佐菌素(STZ)诱导大鼠糖尿病4周时视神经的病理改变. 测量平行和垂直于视神经方向上的水质子的表观扩散系数,分别用ADC和ADC来表示. 初步结果显示模型组左右侧视神经ADC没有出现一致的改变,而ADC都有下降的趋势,但没有达到统计显著性. 该结果提示STZ诱导4周后扩散成像测量参数ADC的改变可能反映了糖尿病引起的视神经轴突损伤.  相似文献   

8.

Objective

The objective was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, heating, artifacts and functional alterations) at 1.5 T and 3 T for the Argus II Retinal Prosthesis (Second Sight Medical Products, Sylmar, CA, USA).

Materials and Methods

Standardized protocols were used to assess magnetic field interactions (translational attraction and torque; 3 T, worst case), MRI-related heating (1.5 and 3 T), artifacts (3 T; worst case) and functional changes (1.5 and 3 T) associated with MRI.

Results

The magnetic field interactions were acceptable. MRI-related heating, which was studied at a relatively high, MR system-reported whole body averaged specific absorption rates, will not pose a hazard to the patient under the conditions used for testing. While artifacts were “moderate” in relation to the dimensions of the Argus II Retinal Prosthesis, optimization of MRI parameters can reduce the size of the artifacts. Exposures to MRI conditions at 1.5 and 3 T did not damage or alter the functional aspects of the Argus II Retinal Prosthesis.

Conclusions

In consideration of the test results, a patient with the Argus II Retinal Prosthesis may undergo MRI at 1.5 T or 3 T when specific guidelines and MRI conditions are followed, including those advised by the manufacturer.  相似文献   

9.
The effects of 5-fluorouracil (5FU, 150 mg/kg, ip) on subcutaneously implanted radiation-induced fibrosarcoma (RIF-1) tumors were monitored by in vivo (1)H MRI to evaluate the water apparent diffusion coefficient (ADC), by single-quantum (SQ) and triple-quantum-filtered (TQF) (23)Na MRI to evaluate compartmental Na(+) content and by positron emission tomography (PET) to evaluate 2-[(18)F]fluoro-2-deoxy-d-glucose (FDG) uptake in the tumor. The MRI experiments were performed on untreated control and treated mice once before and then daily for 3 days after treatment. The PET experiments were performed on separate groups of age- and tumor-volume-matched animals once before and then 3 days after treatment. Tumor volumes significantly decreased in treated animals 2 and 3 days posttreatment. At the same time points, in vivo MRI measurements showed an increase in both total tissue SQ (23)Na signal intensity (SI) and water ADC in treated tumors while control tumors showed no change in these parameters. TQF (23)Na SI and FDG uptake were significantly lower in treated tumors compared with control tumors 3 days after 5FU treatment. The correlated increases in total tissue (23)Na SI and water ADC following chemotherapy reflect an increase in extracellular space, while the lower TQF (23)Na SI and FDG uptake in treated tumors compared with control tumors suggest a shift in tumor metabolism from glycolysis to oxidation and/or a decrease in cell density.  相似文献   

10.
The water proton T1 in human blood diluted by its own plasma was measured with a FT-NMR spectrometer operating at 60MHz for protons. A linear relationship (with a correlation of 0.99) was found between the 1/T1 and hemoglobin content(Hb) in the blood. The exchange of water between the extracellular plasma and the intracellular Hb in blood is known to satisfy the fast chemical exchange conditions, and the decay of magnetization in blood is reported to have a single exponential. Therefore, the obtained relationship should represent fast chemfcal intracellular Hb and the extrace exchange between the lular plasma.  相似文献   

11.
Proving is a key stage in the development of the final structure of bread, as invasive measurements may provoke dough collapse. Therefore, better understanding and better control of the nucleation and the growth of bubbles require the development of non-invasive methods of measurement. In the present work, a non-invasive method is presented for the measurement of local dough porosity from MR image analysis. For this, a direct relation between the gray level of a voxel and its gas fraction was established in the absence of heat and mass transfer. At whole dough scale for a one-dimensional expansion, the porosity estimated from the gray level was compared with the porosity estimated from total dough volume measurements in a range of [0.10, 0.74 m(3) of gas/m(3) of dough]. For short proving times (<30 min), MR image analysis underestimated porosity by a maximum of 0.03 m(3) of gas/m(3) of dough, but otherwise the difference between the two means of measurement was within the standard error of total dough measurements (+/-0.01 m(3) of gas/m(3) of dough). Maps of local porosity in dough during proving are also presented and discussed.  相似文献   

12.

Purpose

To assess the feasibility of measuring pulmonary artery (PA) pulse wave velocity (PWV) in children breathing ambient air and 12% oxygen.

Methods

Velocity-encoded phase-contrast MR images of the PA were acquired in 15 children, aged 9–12 years, without evidence of cardiac or pulmonary diseases. PWV was derived as the ratio of flow to area changes during early systole. Each child was scanned twice, in air and after at least 20 minutes into inspiratory hypoxic challenge. Intra-observer and inter-observer variability and repeatability were also compared.

Results

PA PWV, which was successfully measured in all subjects, increased from 1.31 ± 0.32 m/s in air to 1.61 ± 0.58 m/s under hypoxic challenge (p = 0.03). Intra- and inter-observer coefficients of variations were 9.0% and 15.6% respectively. Good correlation within and between observers of r = 0.92 and r = 0.72 respectively was noted for PA PWV measurements. Mean (95% limit of agreement) intra- and inter-observer agreement on Bland–Altman analysis were − 0.02 m/s (− 0.41–0.38 m/s) and -0.28 m/s (− 1.06–0.49 m/s).

Conclusion

PA PWV measurement in children using velocity-encoded MRI is feasible, reproducible and sufficiently sensitive to detect differences in PA compliance between normoxia and hypoxia. This technique can be used to detect early changes of PA compliance and monitor PAH in children.  相似文献   

13.
PURPOSE: The aim of this experimental study was to evaluate the potential of a simple expiration technique by means of magnetic resonance imaging (MRI) in an animal model to detect pulmonary air-trapping areas after artificial bronchial obstruction. MATERIAL AND METHODS: Sixteen pigs were evaluated by means of a modified T1-weighted FLASH with fat saturation in respiratory arrest (TR=4.6 ms, TE=1.8 ms, alpha=10 degrees, S.D.=3-5 mm). A measurement of the signal intensity (SI) in the peripheral lung tissue was made in both inspiration and expiration before and after inhalation of 2 ml of 0.5% acetylcholine to simulate a bronchial obstruction. A final measurement of the lung SI was also made after bronchospasmolytic induction through salbutamol (beta2-mimetic bronchodilator). RESULTS: In expiration, a mean SI increase in peripheral lung tissue of about 183% was seen in comparison to inspiration (mean SI increase of 11-32). After inhalation of 0.5% acetylcholine, the expirational signal increase in peripheral lung tissue was only 114% of the original SI. The expirational signal homogeneity decreased after inhalation of acetylcholine. After inhalation of salbutamol, the lung tissue signal elevation in expiration was 193%. CONCLUSION: We interpret the low expiratory signal elevation after acetylcholine inhalation as a result of an air-trapped bronchial constriction in certain areas. The simple expiratory technique in an animal model showed that it is suitable to demonstrate obstructive air trapping using MRI.  相似文献   

14.

Purpose

To assess peripheral tissue perfusion disorder in streptozotocin (STZ)-induced diabetic rats by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Materials and Methods

A rat diabetes model was produced by intravenous injection of STZ. Diabetic rats were sustainably treated with either saline or insulin using an Alzet osmotic pump. Hind paw tissue perfusion was measured by signal intensity (SI) enhancement after gadolinium diethylenetriaminepentaacetic acid injection in DCE-MRI study and quantified using the initial area under the SI-time curve (IAUC). Peripheral tissue uptake of [14C]iodoantipyrine (IAP) was also determined as a marker of tissue blood flow for comparison with the IAUC value indicating tissue perfusion.

Results

STZ caused hyperglycemia at 1 and 2 weeks after injection. Treatment with insulin significantly alleviated hyperglycemia. At 2 weeks after STZ injection, peripheral tissue perfusion was clearly reduced in the diabetic rats and its reduction was significantly improved in the insulin-treated diabetic rats. Tissue perfusion evaluated by DCE-MRI was similar to the tissue blood flow measured by [14C]IAP uptake.

Conclusion

Our findings demonstrated that DCE-MRI can assess peripheral tissue perfusion disorder in diabetes. DCE-MRI could be suitable for noninvasive evaluation of peripheral tissue perfusion in both preclinical and clinical studies. It may also be useful for developing novel drugs to protect against diabetic vascular complications.  相似文献   

15.
Most functional magnetic resonance imaging (fMRI) studies in animals are conducted under anesthesia to minimize motion artifacts. However, methods and techniques have been developed recently for imaging fully conscious rats. Functional MRI studies on conscious animals report enhanced BOLD signal changes as compared to the anesthetized condition. In this study, rats were exposed to different concentrations of carbon dioxide (CO(2)) while conscious and anesthetized to test whether cerebrovascular reactivity may be contributing to these enhanced BOLD signal changes. Hypercapnia produced significantly greater increases in MRI signal intensity in fully conscious animals (6.7-13.3% changes) as when anesthetized with 1% isoflurane (3.2-4.9% changes). In addition, the response to hypercapnia was more immediate in the conscious condition (< 30s) with signal risetimes twice as fast as in the anesthetized state (60s). Both cortical and subcortical brain regions showed a robust, dose- dependent increase in MRI signal intensity with hypercapnic challenge while the animals were conscious but little or no change when anesthetized. Baseline variations in MRI signal were higher while animals were conscious but this was off set by greater signal intensity changes leading to a greater contrast-to-noise ratio, 13.1 in conscious animals, as compared to 8.0 in the anesthetized condition. In summary, cerebral vasculature appears to be more sensitive to hypercapnic challenge in the conscious condition resulting in enhanced T2* MRI signal intensity and the potential for better BOLD signal changes during functional imaging.  相似文献   

16.
热作用下蛋白及全血光学特性变化的实验研究   总被引:4,自引:4,他引:4  
利用自行研制的双积分球系统 ,对不同温度 (37℃~ 80℃ )加热后的蛋白及人全血的光学特性参数 (对波长为 6 32 8nm的光而言 )进行了实验研究。结果表明 :热作用下生物样品生理特性的改变可用光学特性参数的变化来描述。不同的热剂量作用下 ,样品形态及结构的改变是不同的 ,相应的光学特性参数 (吸收系数与散射系数 )变化也不同 ;相同热作用下 ,样品成分的不同 ,导致样品光学特性参数的改变也存在差别。光学检测技术可望为热疗的实时无损监测提供一种新的手段。  相似文献   

17.
《Magnetic resonance imaging》1998,16(9):1043-1048
We used a cranial phantom to investigate how intracranial mechanical factors [brain compliance and the resistance to the flow of cerebrospinal fluid (CSF)] affect the way in which CSF pulsations are driven by pulsatile transcranial blood flow. Dynamic phase-contrast magnetic resonance imaging (MRI) was used to measure the transfer function between vascular pulsations and pulsatile response of the CSF below the foramen magnum of the phantom. We found that the coupling between the high frequency components of cervical CSF flow and transcranial blood flow was decreased when the phantom was modified to simulate increased brain compliance and increased resistance to CSF flow.  相似文献   

18.
Summary An analysis of the effect ofB 1 inhomogeneity on spin density andT 1 contrasted images is here given. Distortions both in saturation recovery and inversion recovery sequences are found. The impact of these distortions onin vivo spectroscopy, where quantitative data are required, is also discussed. In general, these aspects are found to be reduced at shortertime parameters of the pulse sequences. Work partially supported by Progetto Finalizzato Tecnologie Biomediche of CNR and by Esacontrol, Genova.  相似文献   

19.
Cerebral hypoxia-ischemia (HI) is an important cause of perinatal brain damage in the term newborn. The areas most affected are the parasagittal regions of the cerebral cortex and, in severe situations, the basal ganglia. The aim of this study was to show that the newborn piglet model can be used to produce neuropathology resulting from moderate HI insult and to monitor damage for 7 days. Two acute cerebral HI were induced in newborn Large White piglets by reducing the inspired oxygen fraction to 4% and occluding the carotid arteries. Newborn piglets were resuscitated, extubated and monitored for 7 days. (31)P magnetic resonance spectroscopy (MRS) offers the ability to monitor the severity of the HI insults. Lactate (Lac) was detected in the HI group at 2 h, 3 days and 5 days after insult by (1)H MRS. Lac/n-acetylaspartate and Lac/choline and Lac/creatine ratios increased significantly (p < 0.01) in the HI group 2 h after HI insults and remained high over 7 days. For the HI group, mean T(2) values increased significantly in the parietal white matter (subcortical) for 5 days after HI insult [117.5 (+/-7.4) to 158.5 (+/-19.2) at T+3 days, 167.7 (+/-15.4) at T+5 days and 160.9 (+/-10.1) at T+7 days (p < 0.01)]. This newborn piglet model of moderate HI brain injury with reproducible cerebral damage could be use as reference for the study of neuroprotective strategy for a period of 7 days.  相似文献   

20.
pH对血清影响的^1H NMR研究   总被引:1,自引:0,他引:1  
维持血液的pH在7.35~7.45范围内,是生命的基本需要.人体生理状态的改变往往会伴随或者引发血液pH的变化.本文通过扩散加权、横向弛豫加权以及饱和转移差谱等1H NMR方法,对pH 7.0~7.8的血清体系进行研究,观察其中大分子和小分子代谢物的变化.实验结果表明pH的改变不仅能够引起血清中一些小分子代谢物化学位移的改变,还会影响小分子代谢物与蛋白的相互作用,引起这些小分子结合态和游离态含量的变化.此外,没有观察到血清蛋白信号的明显变化,仅血清白蛋白赖氨酰信号随pH增高有高场位移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号