首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phototoxicity of sulfonated aluminum naphthalocyanines towards V-79 Chinese hamster cells is investigated. The disulfonated naphthalocyanine exhibits similar photostability, but better cell penetrating properties than the tetrasulfonated dyes. The capacity of the naphthalocyanines to generate singlet oxygen is comparable to that of the corresponding phthalocyanines. However, in contrast to the phthalocyanine dyes, the sulfonated aluminum naphthalocyanines show very little phototoxicity towards the V-79 cells, suggesting close association with non-vital cell constituents or extensive formation of photoinactive adducts and aggregates.  相似文献   

2.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

3.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

4.
At different phthalocyanines and related macrocycles it is shown that one-step, multi-electron transfer and one-step, multi-change of oxidation states occur. At first, the catalytic oxidations of thiols and sulfide in the presence of different Co(II)phthalocyanines are discussed. Thiolates are oxidized to disulfides via a two-electron transfer whereas the reduction of O2 occurs via a two- or four-electron transfer to H2O2 or H2O. Zn(II) and Al(III)phthalocyanines are efficient sensitizers for the conversion of triplet to singlet dioxygen under illumination with visible light. In the presence of thiolates or sulfides an efficient photo-oxidation to sulfonic acids or sulfate is observed. The oxidation state of sulfur changes from ?2 to +4 or +6, respectively. This process of singlet oxygen reactions finds application in the photodynamic therapy of cancer. The unsubstituted zinc(II)-phthalocyanine as p-type molecular semiconductor can efficienfly reduce O2 in photoelectrochemical experiments whereas zinc(II)phthalocyanines with electronwithdrawing groups as n-type conductors are active in the photoelectrochemical oxidation of thiols. All processes include multi-electron transfer. The electrocatalytic reduction of CO2 is investigated at electrodes modified with Co(II)phthalocyanine. In particular, the phthalocyanine in a polyvinylpyridine membrane is active, so the CO2 is reduced to CO by multi-electron transfer. In addition, two photon excitations of a Mg(II)phthalocyanine are presented and some examples are reviewed.  相似文献   

5.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

6.
Eleven silicon phthalocyanines which can be grouped into two homologous series [SiPc[OSi(CH3)2(CH2)(n)N(CH3)2]2, n = 1-6 (series 1), and SiPc[OSi(CH3)2(CH2)3N((CH2)(n)H)2]2, n = 1-6 (series 2)] as well as an analogous phthalocyanine, SiPc[OSi(CH3)2(CH2)3NH2]2, were synthesized. The ground state absorption spectra, the triplet state dynamics, and singlet oxygen quantum yields of 10 of these phthalocyanines were measured. All compounds displayed similar ground state absorption spectral properties in dimethylformamide solution with single Q band maxima at 668 +/- 2 nm and B band maxima at 352 +/- 1 nm. Photoexcitation of all compounds in the B bands generated the optical absorptions of the triplet states which decayed with lifetimes in the hundreds of microseconds region. Oxygen quenching bimolecular rate constants near 2 x 10(9) M(-1) s(-1) were measured, indicating that energy transfer to oxygen was exergonic. Singlet oxygen quantum yields, phi(delta), were measured, and those phthalocyanines in which the axial ligands are terminated by dimethylamine residues at the end of alkyl chains having four or more methylene links exhibited yields near > or = 0.35. Others gave singlet oxygen quantum yields near 0.2, and still others showed singlet oxygen yields of <0.1. The reduced singlet oxygen yields are probably caused by a charge transfer quenching of the 1pi,pi* state of the phthalocyanine by interaction with the lone pair electrons on the nitrogen atoms of the amine termini. In some cases, these can approach and interact with the electronically excited pi-framework, owing to diffusive motions of the flexible oligo-methylene tether.  相似文献   

7.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

8.
Tetra-2,3-pyridinoporphyrazines and the corresponding water-soluble N,N′,N′′,N′′′-tetramethyl-tetra-2,3-pyridinoporphyrazine complexes, containing central metal atoms; M=Ge, Sn, Si and Zn, were synthesized and their photochemical properties were investigated. The reductive quenching of pyridinoporphyrazines excited states, enhanced relative to phthalocyanines, was considered as the first photochemical step of dyes phototransformation in dimethylformamide (DMF) and dimethylsulfoxide (DMSO) solutions under irradiation with visible light. Efficiency of singlet oxygen photosensitization decreases significantly in the row phthalocyanines, unquaternized, quaternized tetra-2,3-pyridinoporphyrazine metallocomplexes.  相似文献   

9.
The synthesis and the properties of 1,4-dibutoxy-2,3-dicyanotriptycene, of a metal-free tetradibenzobarrelenooctabutoxyphthalocyanine, and of the corresponding zinc phthalocyanine are described. The two phthalocyanines do not aggregate when dissolved in benzene at concentrations up to 450 microM. For the metal-free and the zinc compounds, the red band maxima are at 736 and 757 nm, the triplet maxima are at 590 and 605 nm, the triplet state lifetimes are 58 and 177 microseconds, and the protoporphyrin-IX dimethyl ester-to-compound bimolecular rate constants for triplet energy transfer are 2.61 x 10(8) and 1.47 x 10(8) M-1 s-1. Triplet energy transfer from the metal-free compound to O2 is endoergonic by 1.0 kcal mol-1. The potential of the zinc compound for photodynamic therapy is touched upon.  相似文献   

10.
A series of zinc phthalocyanines tetra-α-substituted with 4-(butoxycarbonyl) phenoxy groups (1a) or 4-carboxylphenoxy groups (2a) or 4-(2-carboxyl-ethyl)phenoxy groups (3a), and the corresponding tetra-β-substituted (13b) analogues, have been synthesized and characterized. The effects of the position of substituents at the phthalocyanine skeleton on their spectroscopic, photochemical and photobiological properties have been revealed. When compared with the tetra-β-substituted phthalocyanines, the corresponding tetra-α-substituted analogues exhibit a less aggregating trend in the cellular growth medium, a slightly higher singlet oxygen quantum yield and higher photo-stability in DMF, and a comparable cellular uptake. As a result, the tetra-α-substituted zinc phthalocyanines exhibit a higher photocytotoxicity toward MGC803 human gastric carcinoma cells than the tetra-β-substituted counterparts. Among all these compounds, phthalocyanine 2a shows the highest photodynamic activity, which may mainly be due to its non-aggregated nature in cellular culture medium and high cellular uptake.  相似文献   

11.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

12.
Analysis of the photomixtures resulting from irradiation of aqueous solutions of linoleic acid sensitized by tiaprofenic acid (TPA) or its major photoproduct (DTPA) by HPLC has shown the formation of all the four possible conjugated dienic hydroperoxides. According to laser flash photolysis experiments the rate constants for hydrogen abstraction from linoleic acid by the excited triplet states of TPA and DTPA are 2 x 10(5) and 3.2x 10(5) M(-1) s(-1), respectively. These data, together with the known rate constants for oxygen quenching of triplet (D)TPA and for the reaction of singlet oxygen with linoleic acid, show that the mechanism is mixed type I/type II. Finally, typical radical scavengers such as BHA and singlet oxygen quenchers such as DABCO and sodium azide are efficient quenchers of the triplet excited state of DTPA. This shows the risk of assigning mechanisms based on indirect 'evidences' using 'specific' additives.  相似文献   

13.
测定了新合成的α位取代和β位取代的四-(4-吡啶氧基)酞菁锌配合物的UV-Vis吸收光谱、荧光光谱及激发单重态寿命、纳秒瞬态吸收光谱与激发三重态寿命.在此基础上,与相关配合物进行了比较,探讨了取代基及其取代位置对酞菁锌配合物的吸收光谱、激发单重态寿命及激发三重态寿命的影响.  相似文献   

14.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

15.
Interactions of organic peroxides (R'OOR) and hydroperoxides (R'OOH), including H2O2, with excited triplet and singlet state metallophthalocyanines (MPc, M = Zn, Al) have been studied by T-T absorption decay and fluorescence quenching. The ensuing photochemical processes result in decomposition of (hydro)peroxides as assessed by photo-EPR (electron paramagnetic resonance) and spin trapping. In argon-saturated apolar solutions and low MPc concentrations, alkoxyl free radicals (*OR) were identified as the primary products of (hydro)peroxide breakdown. Similarly, photosensitized decomposition of symmetric disulfides results in the formation of sulfur-centered radicals. In air-free aqueous solutions, ROOH photosensitization always gave rise to a mixture of hydroxyl and peroxyl radical (*OOR) adducts in varying molar ratios. At high MPc concentrations, both in polar and in apolar solutions, the most abundant products of ROOH decomposition were identified as *OOR. This indicates a change in the predominant interaction pathway, most likely mediated by MPc exciplexes and involving H-atom abstraction from ROOH by MPc-cation radicals. The prevalence of MPc singlet vs. triplet state interactions was confirmed by the much higher singlet quenching rate constants (log kq up to 9.5; vs. log kT < or = 4.5). In contrast to the triplet quenching, singlet quenching rates were found to depend on the (hydro)peroxide structure, following closely the trend of varying *OR yields for different substrates. Thermodynamic calculations were performed to correlate experimental results with models for electronic energy and charge transfer processes in agreement with the Marcus theory (Rhem and Weller approximation) and Savéant's model for a concerted dissociative electron transfer mechanism.  相似文献   

16.
Abstract— The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis (tri- n -hexylsi-loxy)silicon phthalocyanine (PcHEX), bis (triphenyl-siloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroieukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotox-icity leading to 0.008 surviving fraction at 2 × 10−9 M for TF-1 and 4 × 10−9 M for Daudi. At 5 × 10−7 M , SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet lifetime: 484 fis in dimethyl sulfoxide/H2O. This value was increased up to 820 u.s when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29–0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.  相似文献   

17.
The syntheses of aryl-substituted octaaza analogs of phthalocyanine — tetra-2,3-(4,5-diphenylpyrazino)porphyrazin and its vanadyl complex — and also of the vanadyl complex of tetra-2,3-(4-phenylquinolino)porphyrazin — a tetraaza analog of naphthalocyanine — are described. A modified singlestage method for the synthesis of the previously reported tetra-2,3-(5-tert-butylpyrazino)porphyrazin is put forward. The electronic absorption spectra of the compounds synthesized have been studied in organic solvents and acid media — in sulfuric acid solution and in organic solvents with the addition of phenol or trichloroacetic acid.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 58–63, January, 1993.  相似文献   

18.
The synthesis and characterization of new peripherally tetra-4-benzyloxybenzoxy substituted metal-free, zinc and lead phthalocyanines are described for the first time in this study. The influence of various organic solvents and the nature of the central metal ion on the spectroscopic, photophysical and photochemical properties has been investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds in different solvents. Photophysical and photochemical properties of phthalocyanine compounds are very useful for photodynamic therapy applications. Especially high singlet oxygen quantum yields are very important for Type II mechanism. The studied phthalocyanine compounds showed good singlet oxygen generation and these compounds show potential as Type II photosensitizers. The fluorescences of the studied compounds are effectively quenched by 1,4-benzoquinone in different solvents.  相似文献   

19.
Novel synthetic polyene polyketones and new synthetic capsorubin isomers were examined for their ability to quench singlet molecular oxygen (1O2) generated by the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylene) dipropionate (NDPO2). C28-polyene-tetrone (1) exhibits the highest physical quenching rate constant with 1O2 (kq = 16 x 10(9) M-1 s-1). For comparison, the rate constant for the most efficient biological carotenoid, lycopene (3) is kq = 9 x 10(9) M-1 s-1 and that of beta-carotene (5) kq = 5 x 10(9) M-1 s-1. The presence of two oxalyl chromophores at the ends of the polyene chain seems to enhance the 1O2 quenching ability in the C28-polyene-tetrone (1). C28-polyene-tetrone-diacetal (2) (kq = 9 x 10(9) M-1 s-1) and C40-epiisocapsorubin (4) (kq = 8 x 10(9) M-1 s-1) also have high 1O2 quenching abilities. Two carotenoids from plants, phytoene and phytofluene, were much less efficient, kq values being below 10(7) M-1 s-1. Due to the very high singlet oxygen quenching abilities, C28-polyene-tetrone (1), C28-polyene-tetrone-diacetal (2) and C40-epiisocapsorubin (4) may have potential use in preventing 1O2-induced damage in biological and non-biological systems.  相似文献   

20.
A series of new metallodendrimers built around a ruthenium phthalocyanine core has been prepared. Employing a convergent synthetic strategy, pyridine-containing ligands were prepared and then assembled onto the ruthenium phthalocyanine through axial ligand coordination. The growing shell of oligoethylene glycol chains surrounding the lipophilic core allows solubilisation in water. Photophysical studies show that all the metallodendrimers are strongly phosphorescent and the deactivation pathway of their triplet state depends on the medium in which the compounds are dissolved. On one hand, quenching of the triplet state by the dendritic shell is observed and found to be substantially enhanced in aqueous media. On the other, the dendrimer shields the phthalocyanine from oxygen. This notwithstanding, the phthalocyanines are able to generate singlet oxygen in less polar environments such as in CHCl(3) or THF solution, while in water the generation of singlet oxygen is almost completely switched off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号