首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
We report herein the development of a highly sensitive colorimetric method for detection of d-Penicillamine using citrate-capped gold nanoparticles (AuNPs). This assay relies upon the distance-dependent of gold nanoparticles surface plasmon resonance band of gold nanoparticles. By replacing the thiol-containing chelator drug, d-Penicillamine, with citrate on the gold nanoparticles surface, a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position due to aggregation of gold nanoparticles which depends on ionic strength, gold nanoparticles and d-Penicillamine concentration. During this process, the plasmon band at 521 nm decreases gradually along with the formation of a new red-shifted band at 630 nm. The calibration curve which is derived from the ratio intensities of absorbance at longer wavelength (630 nm) to original wavelength (521 nm) displays a linear relation in the range of 5.0 × 10?6–3.0 × 10?4 M d-Penicillamine. Lower limit of detection for d-Penicillamine, at the signal-to-noise ratio of 3 (3σ), was 3.8 × 10?6 M. The developed methodology was successfully applied for the determination of d-Penicillamine in human urine and plasma.  相似文献   

2.
The 4-POBN[α-(4-pyridyl-l-oxide)-N-tert-butyl-nitrone] radical adducts of ethyl and pentyl radicals were determined by a combination of high performance liquid chromatography (HPLC) combined with electron paramagnetic resonance (EPR) with HPLC-electrospray (ESI)-mass spectrometry and HPLC-thermospray (TSP)-MS. The identifIcation of the peak corresponding to the spin-trapped radical was done by performing HPLC-EPR under the same chromatographic conditions as the HPLC-MS. The radical adducts could be determined by both techniques, even though for ESI only 12 μL/min of the total 1 mL/min HPLC flow rate could be directed into the ion source.  相似文献   

3.
4.
The dynamic rheological behavior of high density polyethylene (HDPE)/ultrahigh molecular weight polyethylene (UHMWPE) blends, low density polyethylene (LDPE)/UHMWPE blends and linear low density polyethylene (LLDPE)/ UHMWPE blends was measured in parallel plate rheometer at 200°C. The analysis of log-additivity rule, Cole-Cole plots and Han curves of the three series blends indicated that the LDPE/UHMWPE blends were miscible in the melt, while the HDPE/UHMWPE blends and LLDPE/UHMWPE blends showed phase separation. The DSC results of LLDPE/UHMWPE blends and HDPE/UHMWPE blends were consistent with the rheological properties, while for the thermal properties of LDPE/UHMWPE blends, results revealed three endothermic peaks, which indicated a liquid-solid phase separation in LDPE/UHMWPE blends.  相似文献   

5.
In the development of nanoparticle-based vaccine adjuvants, the interaction between nanoparticles (NPs) and the cells is a key factor. To control them, we focused on the relationship between the hydrophobicity of the side chains and the cell membrane. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA), using various types of hydrophobic side chains, was synthesized and used to prepare NPs for evaluating the membrane disruptive activity. When leucine ethyl ester (Leu), methionine ethyl ester (Met), or tryptophan ethyl ester (Trp) was grafted, each polymer formed monodispersed NPs at physiological conditions. Significantly, NPs composed of Leu and Trp showed a membrane disruptive activity at the endosomal environment (pH 5–6.5), while NPs composed of Met did not show. This might be due to the weak hydrophobicity of Met compared to that of Leu and Trp, which demonstrated that the interaction between NPs and cells could be controlled by designing the polymer compositions.  相似文献   

6.
β-phase polyvinylidene fluoride (PVDF)–BaTiO3 nanocomposite samples have been prepared by solution mixing method. XRD data represent that the crystallinity of PVDF decreases with increase in loading level of BaTiO3 nanoparticles. DSC curve represents that the melting point of PVDF is lightly affected by loading concentration of BaTiO3. The morphology and microstructure of PVDF and PVDF embedded by BaTiO3 nanofillers were investigated by using inverted contrast microscopy (ICM) and scanning electron microscopy (SEM). FTIR interferrometry is proven that PVDF and BaTiO3 are not chemically interacting; therefore, interaction of BaTiO3 is van der Waals type of interaction. The thermally stimulated discharge current (TSDC) of PVDF and PVDF–BaTiO3 nanocomposites sample was characterized by single peak. The observed TSDC peak is discussed on the basis of dipolar and interfacial polarization.  相似文献   

7.
Spectrophotometric studies have revealed that ozone oxidizes Cr(III) into Cr(VI), Fe(III) into Fe(VI), Mn(VI) into Mn(VII), and Np(VI) into Np(VII) in the concentrated aqueous silicate solutions. Cr(III) oxidation is accelerated in alkaline-silicate and alkaline solutions as compared to neutral silicate solution. Ferrate and permanganate ions are unstable in Na2SiO3 solutions (0.5–1.3 mol/L of the silicate). Neptunium(VII) ions formed in the course of ozonation are stable in Na2SiO3 solution (1 mol/L) upon drying in air to form solid vitreous mass.  相似文献   

8.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the group of drugs having the therapeutic efficacy of analgesic and antipyretic. To detect health-threatening residues of NSAIDs, a fast and easy multiresidue method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) was described. Ten NSAIDs were extracted from the tissues using 2 mL of acetonitrile and 0.1 mL of 2 mM ammonium formate in distilled water. After clean-up using C18 sorbent, it was evaporated under nitrogen, reconstituted with 1 mL distilled water and analyzed by LC-MS/MS. The method was validated based on guideline for residue testing laboratory. Furthermore, the method has also been applied successfully to detect ten NSAIDs from bovine, porcine, and chicken liver tissues. In a total of 315 liver samples tested, acetylic salicylic acid was detected from 28 porcine and 2 chicken liver tissues at levels of 13?~?576 and 50?~?53 ng/g, respectively. Subsequently, paracetamol was detected in 15 porcine liver tissues with a detection levels of 28?~?381 ng/g. Phenylbutazone and its metabolite, oxyphenylbutazone, were detected at 247 and 15 ng/g range in one of the bovine liver tissue, respectively.  相似文献   

9.
A general expression for angular distribution of Auger electrons in the intermediate coupling scheme is obtained. It is shown that the intermediate coupling can lead to an anisotropy of the Auger line which is isotropic in the pure LS-coupling  相似文献   

10.
11.
Carbon blacks synthesized by the liquid phase plasma process in benzene with and without distilled water showed a very high charging capacity of about 1,540–1,600 mAh/g depending on the liquid involved. CBs synthesized from organic benzene only were found to have a higher specific surface area compared to CBs from benzene with water, contributing to the higher charging capacity of 1,600 mAh/g. The charge–discharge cyclic stability (measured from 2 to 20 cycles) of the CBs synthesized from benzene was significantly improved with the addition of water from 58 % to about 70 % reversible capacity. Our results suggest a promising method of producing carbon black nanoparticles at low temperatures with a reasonable performance applicable for lithium ion batteries.  相似文献   

12.
Point Mutations on the Kirsten rat sarcoma viral oncogene homolog (KRAS) have been identified as an important predictive biomarker for response to cancer therapy targeting the epidermal growth factor receptor. KRAS mutations are prevalent in up to 40 % of all colorectal carcinomas, and routinely conducted KRAS genotyping is becoming mandatory to predict therapy success and to reduce therapy costs. We report a low-cost, disposable and ready-to-use centrifugal microfluidic cartridge (termed GeneSlice) containing preloaded primers and probes. The GeneSlice cartridge enables the parallel detection of the seven most relevant KRAS point mutations by allele-specific real-time PCR. It represents a cost effective alternative to dideoxy-sequencing with a faster time-to-result (~ 2 h versus up to 20 h in case of dd-sequencing). Microfluidic processing of the GeneSlice along with allele-specific amplification and real-time detection are conducted in a slightly modified, commercially available PCR thermocycler. Intra-chip standard deviation of Cq values on the GeneSlices is negligible (GeneSlice 1: Cq,std.dev. = 0.13; GeneSlice 2: Cq,std.dev?=?0.26). In 23 of 24 experiments, the data for genotyping 6 cancer cell lines (n?=?4 per cell line) agreed with dd-sequencing. Additionally, DNA derived from microdissected formalin-fixed and paraffin embedded colorectal carcinomas of two cases was genotyped correctly and reproducibly (n?=?3 per patient; one GeneSlice excluded from evaluation). The GeneSlice therefore clearly demonstrated the potential to become a valuable tool for routine diagnostics of KRAS mutations by reducing costs and hands-on time. Figure
Photograph of a centrifugal microfluidic cartridge “GeneSlice” for multiplex genotyping of KRAS point mutations from tumor cell DNA by allele-specific real-time PCR. Information about the mutation status is required to predict success of state-of-the-art cancer therapy with antibodies  相似文献   

13.
This study evaluates solid-phase micro-extraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) to determine trace levels of bis-phenol A in water and leached from plastic containers. In our study, we used very thin composite membranes prepared in the laboratory. The extraction using headspace post-derivatization with bis(trimethylsilyl) trifluoroacetamide (BSTFA), containing 1 % trimethylchlorosilane (TMCS) vapor, following SPME was compared with extraction without derivatization. The SPME experimental procedures to extract bis-phenol A in water were optimized with a relatively polar polyacrylate (PA)-coated fiber, an extraction time of 50 min, and desorption at 300 °C for 2 min. Headspace derivatization following SPME was performed using 7 μL of BSTFA with 1 % TMCS at 65 °C for 30 s. The precision was 5.2 % without derivatization and 9.0 % headspace derivatization. The detection limit was determined to be at the nanogram per liter level. When SPME was used following headspace derivatization, the detection limit was one order of magnitude better than that achieved without derivatization. The results of this study reveal the adequacy of the SPME–GC–MS method for analyzing bisphenol A leached from plastic containers. The concentrations of bisphenol A leached from plastic containers into water ranged from 0.7 to 78.5 μg L?1.  相似文献   

14.
A number of molecular diagnostic methods have been developed for the detection and identification of mutations in tumor samples, which are important for the choice of treatment in the context of personalized medicine. For the treatment of metastatic melanoma, Vemurafenib is recommended for patients with BRAF V600 activating mutations. However, the different assays developed to date for the detection of these mutations lack sensitivity or specificity or do not allow a sequencing-based identification or validation of the mutation. Recently, enhanced improved and complete enrichment co-amplification at lower denaturation temperature-polymerase chain reaction (E-ice-COLD-PCR) has been developed as a sensitive method for the detection and identification of mutations in KRAS codons 12/13. Here, we present the first E-ice-COLD-PCR assay for the detection and identification of BRAF codon 600 mutations, which has a large dynamic range, as 25 pg to 25 ng can be used as DNA input without any reduction in mutation enrichment efficiency, and which can detect down to 0.01 % of mutated alleles in a wild-type background. The assay has been validated on fresh frozen, formalin-fixed paraffin-embedded (FFPE), and plasma samples of melanoma patients and has allowed the detection and identification of BRAF mutations present in samples appearing as wild type using standard pyrosequencing, endpoint genotyping, or Sanger sequencing. Thus, the BRAF V600 E-ice-COLD-PCR assay is currently one of the most powerful molecular diagnostic tools for the ultrasensitive detection and identification of BRAF codon 600 mutations.  相似文献   

15.
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0~14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.  相似文献   

16.
Salmonella enterica subsp. enterica ser. enteritidis and Salmonella enterica subsp. enterica ser. typhimurium are the most common and severe food-borne pathogens responsible for causing salmonellosis in humans and animals. The development of an early and ultra-sensitive detection system is the first critical step in controlling this disease. To accomplish this, we used the cell systematic evolution of ligands by exponential enrichment (Cell-SELEX) technique to identify single-stranded DNA (ssDNA) aptamers to be used as detection probes that can specifically bind to S. enteritidis and S. typhimurium. A total of 12 target-specific ssDNA aptamers were obtained through ten rounds of Cell-SELEX under stringent selection conditions, and negative selection further enhanced the selectivity among these aptamers. Aptamer specificity was investigated using the gram-negative bacteria E. coli and P. aeruginosa and was found to be much higher towards S. enteritidis and S. typhimurium. Importantly, three candidate aptamers demonstrated higher binding affinities and the dissociation constants (Kd) were found to be in the range of nanomolar to submicromolar levels. Furthermore, individual aptamers were conjugated onto polyvalent directed aptamer polymer, which led to 100-fold increase in binding affinity compared to the individual aptamers alone. Taken together, this study reports the identification of higher affinity and specificity ssDNA aptamers (30mer), which may be useful as capture and detection probes in biosensor-based detection systems for salmonellosis.  相似文献   

17.
A glassy carbon electrode was modified with gold nanoparticles (Au-NPs) on a quaternized cellulose support in a film composed of poly(ethylene glycol diglycidyl ether) (PEGDGE), and Hb was immobilized on the Au-NPs. The sensor film was characterized by UV–vis spectra, scanning electron microscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry of the Hb in the Au@Qc/PEGDGE film revealed a pair of well-defined and quasi reversible peaks for the protein heme Fe(III)/Fe(II) redox couple at about ?0.333 V (vs. SCE). The sensor film also exhibited good electrocatalytic activity for the reduction of nitric oxide and hydrogen peroxide. The amperometric response of the biosensor depends linearly on the concentration of nitric oxide in the 0.9 to 160 μM range, and the detection limit is as low as 12 nM (at 3σ). The response to hydrogen peroxide is linear in the 59 nM to 4.6 μM concentration range, and the detection limit is 16 nM (at 3σ). This biosensor is sensitive, reproducible, and long-term stable. Figure
An electrochemical biosensor based on the immobilization of hemoglobin in Au@Qc NPs /Poly ethylene glycol diglycidyl ether composite film is developed.  相似文献   

18.
The aim of is this study is to explore the role of tissue histidine-rich glycoprotein (HRG) RNA as a promising clinically useful biomarker for breast cancer patients prognosis using nanogold assay. Expression of the HRG RNA was assessed by gold nanoparticles and conventional RT-PCR after purification by magnetic nanoparticles in breast tissue samples. The study included 120 patients, 60 of which were histologically proven breast carcinoma cases, 30 had benign breast lesions and 30 were healthy individuals who had undergone reductive plastic surgery. ER, PR and HER2 status were also investigated. The prognostic significance of tissue HRG RNA expression in breast cancer was explored. The magnetic nanoparticles coated with specific thiol modified oligonucleotide probe were used successfully in purification of HRG RNA from breast tissue total RNAs with satisfactory yield. The developed HRG AuNPs assay had a sensitivity and a specificity of 90 %, and a detection limit of 1.5 nmol/l. The concordance rate between the HRG AuNPs assay with RT-PCR after RNA purification using magnetic nanoparticles was 93.3 %. The median follow-up period was 60 months. Among traditional prognostic biomarkers, HRG was a significant independent prognostic marker in relapse-free survival (RFS). HRG RNA is an independent prognostic marker for breast cancer and can be detected using gold NPs assay, which is rapid, sensitive, specific, inexpensive to extend the value for breast cancer prognosis.  相似文献   

19.
In this study, Pt nanoparticles (NPs) were supported on reduced graphene oxide with the aid of disodium ethylenediamine-tetraacetate, where the Pt iona were initially attached to EDTA-functionalized graphene oxide (EDTA-GO) sheets and then the metal ion and the graphene oxide were reduced simultaneously by ethylene glycol. Electrochemical properties of the catalysts were studied by measuring cyclic voltammetries, and functional groups of the synthesized materials were investigated by Fourier transform infrared spectrometry. Average sizes and lattice parameters were measured by scanning electron microscopy, transmission electron microscopy images, and X-ray diffraction. The results showed that Pt NPs were successfully deposited on the EDTA-GO with the crystallite size of about 2.3 nm. The prepared catalysts demonstrated an enhanced tolerance towards CO poisoning, when EDTA-GO was used as supports. This suggests that EDTA plays a crucial role in the dispersion and electrocatalytic activity of the metal nanoparticles.  相似文献   

20.
To develop an efficient and cost-effective approach for the production of small preventive peptide lunasin with correct natural N terminus, a synthetic gene was designed by OPTIMIZER & Gene Designer and cloned into pTWIN1 vector at SapI and PstI sites. Thus, lunasin was N-terminally fused to the pH-induced self-cleavable Ssp DnaB mini-intein linked to a chitin binding domain (CBD) with no extra residues. The resultant fusion protein was highly expressed by lactose induction in Escherichia coli BL21 (DE3) in a 7-l bioreactor and bound to a chitin affinity column. After washing the impurities, the Ssp DnaB intein mediated on-column self-cleavage was easily triggered by shifting pH and temperature to allow the native lunasin released. The final purified lunasin yielded up to 75 mg/l medium. Tricine/SDS-PAGE and matrix-assisted laser desorption time-of-flight (MALDI-TOF)/mass spectrometry (MS) verified the structural authenticity of the product, implying the correct cleavage at the junction between Ssp DnaB intein and lunasin. MTT assay confirmed its potent proliferation inhibitory activity to human cancer cells HCT-116 and MDA-MB-231; however, no cytotoxicity to normal human lens epithelial cell SRA01/04 and hepatoma HepG2. Taken together, we provide a novel strategy to produce recombinant native lunasin with correct N-terminal processing by using the pH-induced self-cleavable Ssp DnaB mini-intein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号