首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute cross sections for photoionization of metastable Xe* (5p 5 6s3 P 0) atoms are presented over the wavelength range 462–430 nm (photoelectron energy ε=0–200 meV), including the 7p′[3/2]1 and 7p′[1/2]1 autoionization resonances. In addition the angular distribution of the photoelectrons is reported across the 7p′ resonances (ε=90–180 meV). The experimental data are compared with Hartree-Fock calculations of the photoionization process.  相似文献   

2.
Measurements of the Penning ionization cross section, σPI of D atoms by metastable He atoms show that σPI for the reaction He (2 1S) + D is much larger than σPI for He (2 3S) + D. In the relative velocity range νr = (2.3–4.8) × 105 cm/s (0.037–0.163 eV), σPI for He (2 1S) + D collisions was found to vary as νr?0.33.  相似文献   

3.
A crossed beam experiment is used to investigate the Ne*(2p 5 3s,3 P 0, 2) ? H2(1Σ g + ) collision at thermal energy (67 meV). The H2 beam is supersonic, the Ne* beam is thermal. Different collision processes have been analyzed separately by means of a double chopping technique combined with a time of flight measurement. Ions produced by Penning effect and chemi-ionization have been separated from scattered metastable atoms by an accelerating electric field small enough to preserve a reasonable angular resolution: δ?(ions)=±5.5°, δ?(Ne*)=±1°, which allows a determination of differential cross sections. The attenuation method, combined with an absolute measurement of the total H2 flux, has been used to measure the total cross section: σ t =940±220a 0 2 . Differential cross sections have been obtained, in arbitrary but unique unit, for the following processes: (1) elastic collisions, for a mixture (1:3) of para- and ortho-hydrogen; (2) rotationally inelastic collisions:J=0→2; (3) Penning ionization resulting into H 2 + ions; (4) chemiionization yielding NeH+ ions.  相似文献   

4.
《Chemical physics letters》1987,136(2):145-152
A three-dimensional, quantum mechanical, coupled channel distorted wave approximation is used for calculating thermal rate constants for the isotopic D + H2, H + D2, Mu + H2, and para to ortho H + H2 exchange reactions using the most accurate available potential surface. The calculated cross sections for the H+H2 reaction are found to be in excellent agreement with converged close coupling results. Rate constants obtained from the cross sections are compared with the available experimental results.  相似文献   

5.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

6.
Collisions ot fast metastable beams of Ar, H, and D atoms, and H2 and D2 molecules with NO2 producing positive ions and NO?2 were studied. The ratio of the 3B1-1A1 NO?2 cross sections is a linear function of the projectile velocity. This finding is tentatively interpreted in the framework of a Landau-Zener model Earlier results on O?2 are re-examined.  相似文献   

7.
A novel, accurate method for the absolute detection of metastable rare gas atoms is described and demonstrated. It involves a direct in situ determination of the electron emission coefficient γ for impact of the respective metastable atom on a conducting surface. γ is reliably obtained by a cw two-photon ionization — depletion technique: the reduction ΔI S in electron current from the detector surface due to efficient photoionization removal of the metastable flux is compared with the photoelectron current ΔI P (γ = ΔI SI P). The principle of the method, possible realization schemes for the different metastable rare gas atoms and the apparatus are described in detail. The method has been applied so far to metastable Ne* (3s 3 P 2), Ar* (4s 3 P 2), and Kr* (5s 3 P 2) atoms, and corresponding results for γ, obtained with five different chemically clean, polycrystalline surface materials and at two surface temperatures (300 K, 360 K) are reported. Whereas for Ne*, the value of γ (≈0.35) showed only a rather weak dependence on the surface material and temperature (as also found for a mixed He* (23 S, 21 S) beam), strong variations in γ, especially at 300 K, were detected for Ar* and Kr* (values between 0.25 and 0.003). Some applications of the described method, especially with regard to the determination of absolute reaction cross sections involving metastable rare gas atoms, are discussed.  相似文献   

8.
《Chemical physics》1987,115(3):359-379
The velocity dependence and absolute values of the total ionisation cross section for the molecules H2, N2, O2, NO, CO, N2O, CO2, and CH4 by metastable Ne* (3P0) and Ne* (3P2) atoms at collision energies ranging from 0.06 to 6.0 eV have been measured in a crossed beam experiment. State selection of the two metastable states of Ne* was obtained by optical pumping with a cw dye laser. We observe a strongly different velocity dependence at collision energies below about 1 eV for the ionisation cross section of the systems Ne*H2, N2, CO, and CH4, and the systems Ne*O2, NO, CO2, and N2O, respectively. The first group shows an increasing cross section in this energy range, similar to the Ne*Ar system, while the second group shows a very flat behaviour. This behaviour correlates with the difference in character (π or σb) of the orbital of the electron that is removed from the target molecule. For the molecules H2, N2, CO, and CH4 an electron from a σb orbital is removed from the molecule, whereas for O2, NO, N2O, and CO2 an outer π-ortibal electron is involved. For the systems Ne* (3P0, 3P2)H2 we have derived the imaginary part of the optical potential by assuming a real potential similar to the theoretically calculated ground state NaH2 potential of Botschwina et al. The resonance width Γ(r) as a function of the internuclear distance r shows a saturation at small r (r < 2.8 Å) for both the Ne*(3P0)H2 and the Ne*(3P2)H2 interaction. This supports previous conclusions of Verheijen et al. and Kroon et al. Reliable values for the absolute value of the total ionisation cross section have been obtained by performing a careful calibration of the density—length product of the supersonic secondary beam. The results are in good agreement with the values of West et al. for experiments without state selection. The total ionisation cross sections for molecules with π-type ionisation orbitals, with their larger spatial extent, in general are larger than those for molecules with σb-type ionisation orbitals.  相似文献   

9.
Neutralisation processes in 0.15–1.5 keV collisions of H? with Na atoms in the 3s ground state or in the excited 3p state have been investigated by means of time-of-flight analysis of the neutral H atoms produced. The H? - Na(3p) system, investigated here for the first time, is particularly interesting since the entrance channel is embedded in the [H - Na(3s)] +e ? continuum, enabling Penning detachment to occur. The measured relative neutralisation cross section ratios σ(3p)/σ(3s) decrease from 3 to 1.6 with increasing energy. Based on earlier published results for σ(3s), σ(3p) total cross sections exceeding 100 Å2 are estimated.  相似文献   

10.
A scaling relation is proposed which interrelates measurable quantities in the field of atomic collision physics performed with high velocity H+, H 2 + and H 3 + -ions. The relation may be written as $$Q(H^ + ) - 2*Q(H_2^ + ) + Q(H_3^ + ) = 0,$$ whereQ denotes an excitation or ionization cross section or a total or differential secondary particle yield evaluated at the same projectile velocity. The scaling relation will be tested by comparison with experimental data of yields and spectra from ion-induced secondary electron emission measurements and with cross section data for excitation and ionization of atoms and molecules. In general very good agreement is observed for high projectile velocities (v>2 a.u.).  相似文献   

11.
Translationally hot (3.7 eV center-of-mass collision energy) D atoms can be produced by the dissociative recombinationsof DCO+ ions with electrons in interstellar clouds. The reactions of hot D atoms with H2 molecules is an important factor in determining the D to H abundance ratio in the universe from observations of deuterated species in dense interstellar clouds. A simulation of this reaction has been carried out using exact quasiclassical reaction cross sections, together with a series of approximate total collision cross sections. It was found that the total probability of reaction, PR, at 3.7 eV was approximately 0.4. A reaction probability of this magnitude suggeststhat the loss of D atoms by the title reaction be considered in astrochemical modeling of deuterated molecules.  相似文献   

12.
Total integral cross sections for 4He + H2 (ν = 0, j = 0) → 4He + H2 (ν′ = 1, j′ = 0, 2) have been calculated in the total energy range 1.2 to 5.5 eV, according to a quantal sudden approximation for the H2 rotational degrees of freedom and a close coupling expansion of the vibrational degree of freedom. Convergence of the above cross sections is investigated by employing four vibration basis sets in the close coupling calculations, i.e., ν = 0,1, ν = 0,1, 2, ν = 0, 1, 2, 3 and ν = 0, 1, 2, 3, 4. Between 4.2 and 5.5 eV calculations were done with three vibration basis sets; ν = 0.–4, ν = 0–5, and ν = 0–6. It is found that at least four vibrational basis functions are needed to converge (to within 5–10%) these cross sections in the above energy range. Comparison of breathing sphere calculations and summed sudden rotation results shows good agreement for the (weakly anisotropic) Mies-Krauss potential. However, as expected the former results underestimate the vibrational 0 → 1 total integral cross sections.  相似文献   

13.
The orientation and alignment effects for charge exchange in H+ + Na*(3p) collisions are studied using the classical trajectory Monte-Carlo method in the energy range from 1 to 8 keV. For Na*(3p -1) → H*(2s, 2p ±1) transitions a large orientation effect is predicted by the probability functions, in very good agreement with semiclassical calculations. Angular differential cross sections are also calculated and interpreted using the impact parameter dependence of the proton deflection angle. They predict left-right asymmetry in agreement with semiclassical calculations or experimental results, but slightly smaller. Another geometry, not experimentally realized, is considered, where the proton velocity is parallel to the quantization axis of the p ±1 oriented states. Charge exchange from different aligned states with respect to the direction of the projectile velocity is also investigated, but the alignment effects are not as well described as the orientation effects. Total cross sections from oriented or aligned states with cylindrical symmetry around the projectile velocity direction are calculated and allow the hypothesis of velocity matching to be tested.  相似文献   

14.
The method of quasi-classical trajectories on an LEPS hypersurface was used for studying the influence of the exchange of one or both of the hydrogen atoms for deuterium in the reaction H1 + H2Br. As expected, the reaction cross sections of the exchange and abstraction reactions were found to increase if H1 was replaced by D and decrease if H2 was replaced by deuterium. A similar change in the reaction cross sections have also been observed for vibrationally excited reactants. The distribution of vibrational (rotational) energy is related to the ωe (Be) values of the respective reactants and products.  相似文献   

15.
A new mechanism Of H2 dissociation in electrical discharges (1011 ? ne ? 1012 cm?3, 2.10?16 ? E/N ? 3.10?16 V cm2, 300 ? Tg ? 1000 K, 3 ? p ? 30 torr) is presented and discussed. In this mechanism, called joint vibro-electronic mechanism (JVE), the electrons of the discharge create a strong vibrational disequilibrium with respect to the gas temperature (Tg) and promote electronic transitions from all vibrational levels of 1Σg H2 state to the repulsive 3Σu one. Moreover the V-V (vibration-vibration) and V-T (vibration-translation) energy exchanges are considered for building up the vibrational distribution of 1Σg state. A complete set of e - D cross sections (e + H2(1Σg,ν) → e + H2 (3Σu) → + 2H, ν = 0,14) is calculated by using an extension of the semiclassical Gryzinski theory in combination with the Franck-Condon principle. Dissociation rates calculated according to JVE are larger either than those obtained by the pure vibrational mechanism (PVM) discussed in our previous work or than those from the direct electronic impact mechanism (DEM) from the ground vibrational level. The behaviour of JVE rates as a function of gas temperature (Tg), of E/N, of electron density (ne) and of pressure is then reported. The results show strong differences as compared, with the corresponding values obtained, with PVM. Finally the influence of the atoms as well as their recombination on the dissociation rates is discussed. The results have been obtained by solving a system of vibrational master equations.  相似文献   

16.
The mechanism of propene loss from protonated phenyl n-propyl ether and a series of mono-, di-, and trimethylphenyl n-propyl ethers has been examined by chemical ionization (CI) mass spectrometry in combination with tandem mass spectrometry experiments. The role of initial proton transfer to the oxygen atom and the aromatic ring, respectively, has been probed with the use of deuterated CI reagents, D2O, CD3OD, and CD3CN (given in order of increasing proton affinity), in combination with deuterium labeling of the β position of the n-propyl group or the phenyl ring. The metastable [M + D]+ ions of phenyl n-propyl ether—formed with D2O as the CI reagent—eliminate C3H5D and C3H6 in a ratio of 10:90, which indicates that the added deuteron is incorporated to a minor extent in the expelled neutral species. In the experiments with CD3OD as the CI reagent, the ratio between the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of phenyl n-propyl ether is 18:82, whereas the ratio becomes 27:73 with CD3CN as the reagent. A similar trend in the tendency to expel a propene molecule that contains the added deuteron is observed for the metastable [M + D]+ ions of phenyl n-propyl ether labeled at the β position of the alkyl group. Incorporation of a hydrogen atom that originates from the aromatic ring in the expelled propene molecule is of negligible importance as revealed by the minor loss of C3H5D from the metastable [M + H]+ ions of C6D5OCH2CH2CH3 irrespective of whether H2O, CH3OH, or CH3CN is the CI reagent. The combined results for the [M + D]+ ions of phenyl n-propyl ether and deuterium-labeled analogs are suggested to be in line with a model that assumes that propene loss occurs not only from species formed by deuteron transfer to the oxygen atom, but also from ions generated by deuteron transfer to the ring. This is substantiated by the results for the methyl-substituted ethers, which reveal that the position as well as the number of methyl groups bonded to the ring exert a marked effect on the relative importances of the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of the unlabeled methyl-substituted species.  相似文献   

17.
We have carried out a comprehensive experimental and theoretical investigation of the autoionizing collision systems He*(23 S, 21 S) + He*(23 S). We present high resolution electron energy spectra, obtained with a single He* beam (average relative collision energy 〈E rel〉=1.6 meV) and with crossed He* beams (〈E rel〉> =61 meV). The spectra show substantial structure, and under single beam conditions fast oscillations due to the interference of incoming and outgoing heavy particle waves in the entrance channels are observed. Accurate ab initio potential curves for the seven lowest He*—He*(Σ) molecular states have been obtained from a Feshbach projection scheme, and width functions for He*(23 S) + He*(23 S) have been derived by Stieltjes imaging. Based on these ab initio data, detailed quantum mechanical calculations of the electron spectra have been carried out and provide a thorough understanding of the experimentally observed spectral features. Good overall agreement of the calculated spectra with the experimental data is observed. The close coincidence in the positions of the experimental and theoretical peaks, especially for He*(23 S) + He*(23 S), underlines the reliability of the ab initio potentials. In the He*(21 S) + He*(23 S) electron spectrum, the dominant peak is traced to be due to autoionization from the 23Σ+ g molecular state accessed via an avoided crossing. We also present a detailed discussion of the total ionization cross sections σtot and of the fraction σAItot for associative ionization together with a critical comparison with previous work. The ionization probabilities for close collisions in entrance channels, from which autoionization is spin-allowed, are near unity, and therefore the absolute values and the collision energy dependence of the total cross sections simply reflect the long-range behaviour of the excited state potentials.  相似文献   

18.
The D2 loss from C2D+6 ions and the HD loss from C2D5H+ ions has been investigated in a photoelectron photoion coincidence experiment employing a reflecting ion time of a flight mass spectrometer (Reflectron). The experiment is able to distinguish the metastable formation of C2D+4 ions (m/z = 32) from C2D+6 ions by D2 loss and from C2D5H+ ions by HD loss simultaneously in a mixture of deuterated ethanes. The breakdown curves of the title reactions are presented and compared to the H2 loss from C2H+6 ions. The HD loss from C2D5H+ is shifted by 67 meV and the D2 loss from C2D+6 is shifted by 108 meV with respect to the H2 loss from C2H+6. This shift reflects a strong kinetic isotope effect which is most likely due to tunneling of H/D atoms through a barrier.  相似文献   

19.
Detection of atoms by mass spectrometry has been used to study the reactions of hydrogen azide, HN3, with H atoms and active nitrogen, in a fast flow reactor at pressures of about 1 torr. Stoichiometry and products of the H + HN3 reaction have been determined and the rate constant of the initial step, assumed to be H + HN3 → NH2 + N2, was found to be 2.54 × 10?11 exp (?4600/RT) cm3 molecule?1 s?1, in the temperature range of 300–460K. The formation of NH3 and H2 products has been discussed from the different secondary steps which may occur in the mechanism. For the reaction of active nitrogen with HN3, evidence has been found for the participation of excited nitrogen molecules produced by a microwave discharge through molecular nitrogen. The influence of excited nitrogen molecules has been reduced by lowering the gas flow velocity. It was then possible to study the N + HN3 reaction for which the rate constant of the initial step was found to be 4.9 × 10?15 cm3 molecule?1 s?1 at room temperature. Finally, the occurrence of these elementary reactions has been discussed in the mechanism of the decomposition flame of HN3.  相似文献   

20.
The D + H2(ν = 1) reaction, D + H2(ν = 1) → Ka HD(ν = 1) + H, → Kn HD(ν = 0) + H, → Kr D + H2(ν = 0) has been studied. The measurements were made in a flow-tube apparatus at 300 K. Vibrationally excited H2 was generated in a furnace and D atoms in a microwave discharge. EPR and thermometric techniques were used for the detection of D and H atoms and H2(ν = 1). The product branching rate constants (in CM3/Molecule s) were found to be Ka = (10.7 ± 4.1) × 10?13. Kn = (5.4 ± 2.7) × 10?13, Kr, < 2.7 × 10?13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号