首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-resolved optical emission spectroscopy has been successfully employed to investigate the evolution of plasma produced by the interaction of IR- and visible-pulsed laser beams with a titanium target in ambient air at atmospheric pressure. The characterization of the plasma-assisted pulsed laser ablation of the titanium target is discussed in this study. The emission spectrum produced by the titanium plasma in the wavelength range 200–1,000 nm has been carefully investigated for different experimental conditions. Boltzmann plots have been used in the calculation of the excitation temperature employing Ti II spectral lines at 286.23, 321.71, 325.29, 348.36, and 351.08 nm; this set of lines was tested and proved to be suitable for the measurement of the plasma temperature. The obtained temperature is in good agreement with the one obtained from Ti II spectral lines previously suggested by Hermann et al. [J. Appl. Phys. 77, 2928–2936, 1995, 22]. Moreover, the Stark broadening method has been employed for electron density measurements. In this study, the Stark width of the Ti II spectral line at 350.49 nm was used.  相似文献   

2.
We present optical emission characteristics of the titanium plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser using laser induced breakdown spectroscopy (LIBS). The experimentally observed line profiles of neutral titanium (Ti I) have been used to extract the electron temperature (T e ) using the Boltzmann plot method. The electron number density (N e ) is calculated using the Stark broadening profile of 368.73 nm spectral line. Beside we have studied the spatial variation of electron temperature and number density as a function of laser energy for titanium plasma by placing the target material in air (at atmospheric pressure). We have determined the electron temperature and the electron number density along the axial position of the plasma plume.  相似文献   

3.
In this work, alumina (Al2O3) containing different volume % of titanium carbide (TiC) ranging from 0 to 30 were consolidated by the novel spark plasma sintering. The spectroscopic analysis of the plasma generated by irradiation of laser Nd:YAG (λ = 1,064 nm) on different concentrations of the composites in air atmospheric pressure was performed. The qualitative examination of the composites confirms the presence of aluminum, titanium, and carbon as major elements, while magnesium and sodium have been found as minor trace elements. Plasma parameters were estimated by assuming the LTE conditions for optically thin plasma. The electron density and temperature were evaluated by using the Stark broadening and intensity of selected aluminum emission lines, respectively. The addition of TiC to Al2O3 shows a linear behavior with plasma temperature corroborated by the calibration curve of Ti in the composites. The results suggest that calibration curve between plasma temperature and the composites can be used to estimate different concentrations of TiC in Al2O3 without analyzing the whole elements in the composites and thus opens up new applications of LIBS in ceramic industry.  相似文献   

4.
In the present study OI spectral lines are measured, tested, and developed for diagnostics of laser-induced plasma experiments in air. The plasma plume was generated by the interaction of a 6-ns 750-mJ Nd:YAG laser at the fundamental wavelength of 1.06 µm with a standard Al target of known elemental composition in air. The emitted spectrum was in the range 200–1000 nm and was recorded using an Echelle spectrograph equipped with a time-gated ICCD camera. The measurements were performed at several delay times (0–10 µs). Based on LTE assumption, the excitation temperature is derived using a Boltzmann plot of OI emission lines. The FWHM of the Stark broadened OI line at 844.65 nm is used for electron density measurements at different times.  相似文献   

5.
In this study, the Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys at the range of 10–12 at.% of aluminum and 4–5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu–Al–Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu–Al–Mn–Ni sample is martensite, and due to the low solubility of the Ti, the Cu–Al–Mn–Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu–Al–Mn, Cu–Al–Mn–Ni and Cu–Al–Mn–Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.  相似文献   

6.
Laser-induced breakdown spectroscopy (LIBS) has proven to be extremely versatile, providing multielement analysis in real time without sample preparation. The principle is based on the ablation of a small amount of target material by interaction of a strong laser beam with a solid target. The laser must have sufficient energy to excite atoms and to ionize them to produce plasma. We aimed to improve the LIBS limit of detection (LOD) and the precision of spectral lines emitted from the produced plasma by optimizing the parameters affecting the LIBS technique. LIBS LOD is affected by many experimental parameters such as interferences, self-absorption, spectral overlap, signal-to-noise ratio, and matrix effects. The plasma in the present study is generated by focusing a 6-ns pulsed Nd–YAG laser at the fundamental wavelength of 1,064 nm onto the Al target in air at atmospheric pressure. The emission spectra are recorded using an SE 200 Echelle spectrometer manufactured by the Catalina Corporation; it is equipped with an ICCD camera type Andor model iStar DH734-18. This spectrometer allows time-resolved spectral acquisition over the whole UV-NIR (200–1,000 nm) spectral range. Calibration curves for Cu, Mg, Mn, Si, Cr, and Fe were obtained with linear regression coefficients around 99 % on the average in aluminum standard alloy samples. The determined LOD has very useful improvements for Cu I at 521.85 nm, Si I at 288.15 nm, Mn I at 482.34 nm, and Cr I at 520.84 nm spectral lines. LOD is improved by 83.8 % for Cu, 49 % for Si, 84.3 % for Mn, and 45 % for Cr lower with respect to the previous works.  相似文献   

7.
In this study, cathodoluminescence (CL) spectroscopy at direct current and alternating current under the sample temperature condition of 40–293 K using different modulation frequencies is presented for alkali feldspar from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The CL spectra of the alkali feldspar at room and low temperature confirm that the observed emission peaked at ~460 nm could be associated with Al-O?-Al or Ti impurity centers, yellow emission ~560 nm could be associated with the presence of the centers such as radiation-induced defect centers, and ~756 nm emission could be associated with the Fe3+ impurity center on T1 and T2 sites. The consequence of their association is to produce different luminescence properties such as intensity, peak wavelength, and band shape.  相似文献   

8.
ABSTRACT

A systematic investigation on the influence of the diffusion parameters (time and temperature) and initial titanium film thickness on the spectral characteristics of the LiNbO3 Raman modes is reported. Raman spectra are measured in the range 50–1000 cm?1 ~2 µm below the surface of the crystals. Broadening of the Raman lines and, therefore, crystal lattice disorder induced by the titanium ions are found to depend on the fabrication parameters. The disorder associated with the titanium ions near the surface of LiNbO3 is encoded in the broadening of the A1(TO1) Raman line. A linear relation between the A1(TO1) mode broadening and the Ti concentration is presented. The diffusion theory is used to explain the experimental data. Raman spectroscopy combined with diffusion theory can be used to estimate the evolution of the titanium surface concentration.  相似文献   

9.
In this work, laser induced breakdown spectroscopy (LIBS) is used to determine the composition of titanium oxide film produced by anodized of Ti6Al4V alloy. We have used Ti lines in the spectral region between 470–520 nm to determine temperature of the plasma generated on anodized surface of Ti6Al4V alloy for temperature determination by Boltzmann plot method. In order to measure the content of oxygen and titanium ratio on the surface the alloy, we have used the oxygen lines 777.194, 777.417 and 777.539 nm, and titanium lines 780.597 and 782.491 nm observed in an ambient of argon. Finally, we report the possibilities for the determination of the coating chemical composition using LIBS.  相似文献   

10.
Double-pulse Laser-Induced Breakdown Spectroscopy (LIBS) in an orthogonal configuration was used to investigate plasma temperature and electron density effects on Mg II emission spectral line broadening. The experiments were carried out with two Nd:YAG lasers, one operating at 355 nm for ablation and the other one at 1064 nm for plasma reheating in air at atmospheric pressure. Temporally resolved plasma temperature and electron density were measured at various delay times. Data in this study show prolonged emission of Mg II (280.27 nm) as well as enhancement of the signal intensity when using double-pulse excitation compared to the single-pulse case. An enhancement of ~8× was attained with a delay between the laser pulses equal to 1 μs. The enhancement was accompanied by higher plasma temperature and increased electron density. The double-pulse LIBS configuration provides energy to sustain the plasma emission at a period in time when the linewidth is minimum, thereby improving the analytical capabilities of low spectral resolution instrumentation typically used in LIBS system.  相似文献   

11.
Abstract

Aluminum-based composites containing 0.06, 0.09, 0.12 fractions of in situ-synthesized TiC (Titanium carbide) particles have been prepared through in-melt reaction from Ai–SiC–Ti system following a simple and cost-effective stir-casting route. The TiC forms by the reaction of Ti with carbon which is released by SiC at temperatures greater than 1073 K. However, some amount of titanium aluminide (Al3Ti) is also formed. The formation of TiC has been confirmed through X-ray diffraction studies of the composite. The hardness and tensile strength have been found to increase with increasing amount of TiC. The friction and wear characteristics of the composites have been determined by carrying out dry sliding tests on pin-on-disc machine at different loads of 9.8 N, 19.6 N, 29.4 N, 39.2 N at a constant sliding speed of the 1 m/s speed. The wear rate i.e. volume loss per unit sliding distance has been found to increase linearly with increasing load following Archard’s law. However, both the wear rate and friction coefficient have been observed to decrease with increasing amount of TiC in the composite. This has been attributed to (i) a relatively higher hardness of composites containing relatively higher amount of TiC resulting in a relatively lower real area of contact and (ii) the formation of a well-compacted mechanically mixed layer of compacted wear debris on the worn surface which might have inhibited metal–metal contact and resulted in a lower wear rate as well as friction coefficient.  相似文献   

12.
Systematic analysis of the temperature dependence of the intensity ratio between already assigned and unassigned transitions enabled the determination of the most probable energy of the lower state of the unassigned transition. Such a procedure has been applied to transitions of 14NH3 ammonia in the range 6626–6805 cm?1 between 130 and 300 K. This information is of great interest in the considerable task of the assignment of the complete 1.5 μm infrared spectral range where combination and overtone vibrational bands are present. 2451 transitions have been observed at different temperatures. For 2133 the line strength and for 1956 transitions the values of lower state energies were derived. Our work was compared with recent Fourier transform study covering a larger energy range (6300–7000 cm?1) with smaller temperature range (185–296 K)  相似文献   

13.
The local structure of titanium in tektites from six strewn fields was studied by Ti K‐edge X‐ray absorption near edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS) in order to provide quantitative data on Ti—O distance and Ti coordination number. The titanium in tektites possessed different coordination environment types. XANES spectra patterns revealed resemblance to high‐temperature TiO2–SiO2 glass and TiO2 anatase. All samples showed that the valence of Ti is 4+. Based on the Ti—O distances, coordination numbers and radial distribution function determined by EXAFS analyses, the tektites were classified into three types: type I, Ti occupies a four‐coordinated tetrahedral site with Ti—O distances of 1.84–1.79 Å; type II, Ti occupies a five‐coordinated trigonal bipyramidal or tetragonal pyramidal site with Ti—O distances of 1.92–1.89 Å; type III, Ti occupies a six‐coordinated octahedral site with Ti—O distances of 2.00–1.96 Å. Although Ti occupies the TiO6 octahedral site in most titanium minerals under ambient conditions, some tektites have four‐ and five‐coordinated Ti. This study indicated that the local structure of Ti might change in impact events and the following stages.  相似文献   

14.
Evaluation of plasmas produced and optimized for improving the capability of convenential laser induced breakdown spectroscopy (LIBS) for analytical purposes of solid samples is the main goal of the present work. The plasma produced in the present study was generated by focusing a single nano-second Nd:YAG laser at the fundamental wavelength of 1064 nm and at the second harmonic wavelength of 532 nm on an Al target in air at atmospheric pressure. The emission spectrum was recorded time resolved over the whole UV-NIR (200–1000 nm) spectral range. This work describes an extension of previously reported studies and focuses now on the determination of the plasma parameters at the optimum condition – highest signal-to-noise ratio (SNR) and minimum limit of detection (LOD) — of the LIBS technique, which is now widely applied to the elemental analysis of materials in atmospheric air. Parameters of the produced plasma in the time interval from 0 to 10 μs are determined for to further understanding the LIBS plasma dynamics. O I and Mn I spectral lines are used in the present work as thermometric lines for the determination of the plasma temperature based on Boltzmann plots. Stark broadening of lines yields the electron density. The widths of the H α -line at 656.27 nm, of the O I line at 844.65 nm, of Al II lines at 281.65 nm and 466.30 nm and of the Si I line at 288.15 nm has been utilized for that. The plasma temperature ranged from 0.73 eV to around 1 eV for the different laser energies with both laser wavelengths for the optimized plasma used for LIBS analysis. This temperature is very close to that well known for the other spectrochemical analytical techniques or in excitation sources such as inductively coupled plasma-optical emission spectrometry (ICP-OES).  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) was applied for parametric studies of titanium (Ti) plasma using single and double pulsed laser excitation scheme. Here a pulsed Nd:YAG laser was employed for generation of laser produced plasma from solid Ti target at ambient pressure. Several ionized titanium lines were recorded in the 312–334 nm UV region. The temporal evolution of plasma parameters such as excitation temperature and electron number density was evaluated. The effect of incident laser irradiance, position of the laser beam focal point with respect to the surface of illumination, single and double laser pulse effect on plasma parameters were also investigated. This study contributes to a better understanding of the LIBS plasma dynamics of the double laser pulse effect on the temporal evolution of various Ti emission lines, the detection sensitivity and the optimal dynamics of plasma for ionized states of Ti. The results demonstrate a faster decay of the continuum and spectral lines and a shorter plasma life time for the double pulse excitation scheme as compared with single laser pulse excitation. For double pulse excitation technique, the emissions of Ti lines intensities are enhanced by a factor of five which could help in the improvement of analytical performance of LIBS technique. In addition, this study proved that to avoid inhomogeneous effects in the laser produced plasma under high laser intensities, short delay times between the incident laser pulse and ICCD gate are required.  相似文献   

16.
In this work, a one-step solid-phase sintering process via TiO2 and Li2CO3 under an argon atmosphere, with ultra-fine titanium powder as the modifying agent, was used to prepare a nano-sized Li4Ti5O12/Ti composite (denoted as LTO–Ti) at 800 °C. The introduction of ultra-fine metal titanium powder played an important role. First, X-ray photoelectron spectroscopy demonstrates that Ti4+ was partially changed into Ti3+, through the reduction of the ultra-fine metal titanium powder. Second, X-ray diffraction revealed that the ultra-fine metal titanium powder did not react with the bulk structure of Li4Ti5O12, while some pure titanium peaks could be seen. Additionally, the size of LTO–Ti particles could be significantly reduced from micro-scale to nano-scale. The structure and morphology of LTO–Ti were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical tests showed a charge/discharge current of 0.5, 1, 5, and 10 C; the discharge capacity of the LTO–Ti electrode was 170, 161, 140, and 111 mAh g?1. It is believed that the designed LTO–Ti composite makes full use of both components, thus offering a large contact area between the electrolyte and electrode, high electrical conductivity, and lithium-ion diffusion coefficient during electrochemical processes. Furthermore, ultra-fine titanium powder, as the modifying agent, is amenable to large-scale production.  相似文献   

17.
TiO2 thin films of different thickness were prepared by the Electron Beam Evaporation (EBE) method on crystal silicon. A variable angle spectroscopic ellipsometer (VASE) was used to determine the optical constants and thickness of the investigated films in the spectral range from 300 to 800 nm at incident angles of 60°, 70°, and 75°, respectively. The whole spectra have been fitted by Forouhi–Bloomer (FB) model, whose best-fit parameters reveal that both electron lifetime and band gap of TiO2 thin film have positive correlation to the film thickness. The refractive indices of TiO2 thin film increase monotonically with an increase in film thickness in the investigated spectral range. The refractive index spectra of TiO2 thin films have maxima at around 320 nm and the maxima exhibit a marginally blue-shift from 327.9 to 310.0 nm with an increase in film thickness. The evolution of structural disorder in the TiO2 thin film growth can be used to explain these phenomena.  相似文献   

18.
The cuprous oxide (Cu2O) thin films were electrodeposited with different reaction temperatures. The structural, morphological, optical, photoluminescence and photo response properties of the deposited films were analyzed. XRD analysis reveals cubic crystal structure for the deposited films with polycrystalline nature. The film deposited at room temperature possess high crystallite size of 37 nm. The surface morphology shows that by increasing the deposition temperature pyramid shaped morphology changes. Laser Raman study confirms the peaks 109, 148, 219, 415 and 635 cm?1 conforms the Cu2O phase formation. The band gap of the films are 2.02, 2.10 and 2.27 eV for the RT, 40 and 50 °C, respectively. The photoluminescence spectral analysis contains an emission peak at 618 nm confirm the formation of Cu2O. The photo response study confirms the ohmic nature of the films. The film electrodeposited at room temperature showed good I–V curve at the illumination of 300 W cm?2.  相似文献   

19.
We present the optical emission characteristics of the barium plasma produced at the surface of barium hydroxide Ba(OH)2, also known as baryta, generated by the first harmonic (1,064 nm) of a Q-switched Nd:YAG laser. The laser beam was focused on target material by placing it in air at atmospheric pressure. The experimentally observed line profiles of neutral barium have been used to extract the electron temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadening. The electron temperature is calculated by varying distance from the target surface along the line of propagation of plasma plume and also by varying the laser energy. Besides, we have studied the variation of number density as a function of laser energy as well as its variation with distance from the target surface. It is observed that electron temperature and electron number density increase as laser energy increases.  相似文献   

20.
采用激光诱导击穿光谱对铁(Fe)合金中的钛元素(Ti)的含量进行测量。实验中激光器在最大能量输出(50 mJ),延时为1 μs时光谱信号的强度值最大。在此条件下,分别使用传统定标法和Fe Ⅰ 438.35 nm及Fe Ⅰ 427.12 nm两条谱线的内标法对铁合金中的Ti进行定量分析。内标法得到的拟合相关系数(r)分别为0.997 8和0.993 9,优于传统法得到的r(0.956 3)。提出了一种双谱线平均内标法,拟合得出r为0.998 4。同时,在浓度为0.063%~1.9%的范围内传统定标法测量的相对误差为23.7%,内标法的相对误差为6.0%,采用平均内标法后相对误差降为3.9%。最后,通过测量的Ti光谱计算了激光能量为50 mJ时所产生的等离子体温度为6 654.3 K,电子密度为1.072×1022 cm-3,并讨论了激光能量与烧蚀产生等离子体温度之间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号