首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, a pseudodouble-chained ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), was prepared from a mixture of cationic surfactant, hexadecyltrimethylammonium bromide, and anionic surfactant, sodium dodecylsulfate. Positively charged catanionic vesicles were then successfully fabricated from HTMA-DS with the addition of cationic surfactants, dialkyldimethylammonium bromide (DXDAB), including ditetradecyldimethylammonium bromide (DTDAB), dihexadecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide (DODAB), with a mechanical disruption approach. The control of charge characteristic and physical stability of the catanionic vesicles through the variations of DXDAB molar fraction and alkyl chain length was then explored by size, zeta potential, and Fourier transform infrared analyses. It was found that the molecular packing and/or molecular interaction of HTMA-DS with DXDAB rather than the electrostatic repulsion between the charged vesicles dominated the physical stability of the mixed HTMA-DS/DXDAB vesicles. The presence of DTDAB, which possesses short alkyl chains, could adjust the packing of the unmatched chains of HTMA+ and DS? and promote the vesicle formation. However, the weak molecular interaction due to the short chains of DTDA+ could not maintain the vesicle structures in long-term storage. With increasing the alkyl chain length of DXDAB, it was possible to improve the vesicle physical stability through the enhanced molecular interaction in the vesicular bilayer. However, the long alkyl chains of DODAB unmatched with those of HTMA-DS, resulting in the vesicle disintegration in long-term storage. For the formation of stable charged catanionic vesicles of HTMA-DS/DXDAB, a good match in hydrophobic chains and strong molecular interaction were preferred for the vesicle-forming molecules.  相似文献   

3.
Catanionic vesicles are considered a potential alternative to liposomes for drug delivery systems because of their greater stability and lower cost. Before using catanionic vesicles in vivo, their interactions with macrophages must be fully understood because they are primarily removed from circulation by the macrophages of the mononuclear phagocyte system. Using flow cytometry, we examined the intracellular responses-reactive oxygen species (ROS) content, mitochondrial membrane potential, cell size and complexity, and cell cycle profiles-in U-937 human macrophages treated with positively charged catanionic vesicles. Kinetic hydrogen peroxide production initially increased at lower concentrations (4-10nM) but declined at higher concentrations (40 nM and 80 nM) over the entire incubation period. Superoxide content generation, however, increased over the entire concentration range and incubation period. Catanionic vesicles decreased mitochondrial membrane potential for every concentration after 4h of incubation but caused a significant fluctuation in mitochondrial membrane potential at 6h. After 6h of incubation, catanionic vesicles produced more changes in cell size and complexity than after 4h. The increase in the subG1 population of cells treated with catanionic vesicles at higher doses indicated that apoptosis progressed. Positively charged catanionic vesicles induced different activated patterns of ROS generation and changes in mitochondrial membrane potential than did cationic liposomes. The nature of the interactions between macrophages and catanionic vesicles is of great importance for the design of safer and more effective delivery systems for macrophages. Our findings contribute to a better understanding of the molecular action of catanionic vesicles in the cellular system.  相似文献   

4.
The aggregation behaviors of the cationic and anionic (catanionic) surfactant vesicles formed by didodecyldimethylammonium bromide (DDAB)/sodium bis(2-ethylhexyl) phosphate (NaDEHP) in the absence and presence of a negatively charged polyelectrolyte are investigated. The amount of the charge on the vesicle can be tuned by controlling the DDAB/NaDEHP surfactant molar ratio. The charged vesicular dispersions made of DDAB/NaDEHP are mixed with a negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on the polyelectrolyte/vesicle charge ratio, complex flocculation or precipitation occurs. Characterization of the catanionic vesicles and the complexes are performed by transmission electron microscope (TEM), Cryo-TEM, dynamic light scattering (DLS), conductivity, turbidity, zeta potential, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS) measurements.  相似文献   

5.
Four ion-pair amphiphiles (IPAs), derived from the pairing of alkyltrimethylammonium chlorides and sodium alkyl sulfates, were used to form catanionic vesicles in water upon the mechanical dispersion method. For the first time in the literature, short-chained alcohols (methanol, ethanol, 1-propanol, and 1-butanol) were added as cosolvents at a variety of concentrations and systematically studied for their effects on the stability of the ensuing vesicles. Dynamic light scattering measurements indicated that vesicles formed from one of the IPAs (i.e., dodecyltrimethylammonium dodecyl sulfate) could be efficiently and successfully stabilized by the addition of appropriate amounts of 1-propanol and 1-butanol. Maximum lifetimes of more than 1 year and 132 days for stable vesicles in 5% 1-butanol and 15% 1-propanol solutions, respectively, were observed, and this demonstrates that a novel method for the stabilization of catanionic vesicles formed from IPAs becomes available by means of cosolvent addition. Furthermore, the stability of catanionic vesicles was found to be strongly dependent on cosolvent concentration. In general, the vesicle stability increased with increasing the cosolvent concentration, reached a maximum at a specific concentration, and thereafter decreased with further increasing the concentration. The vesicles finally disintegrated into constituent molecules in solutions of high cosolvent concentrations. An explanation of cosolvent effects based on the medium dielectric constant was proposed.  相似文献   

6.
The aim of this study was to explore if mixtures of drug containing catanionic vesicles and polymers give rise to gel formation, and if so, if drug release from these gels could be prolonged. Catanionic vesicles formed from the drug substances alprenolol or tetracaine, and the oppositely charged surfactant sodium dodecyl sulphate were mixed with polymers. Three polymers with different properties were employed: one bearing hydrophobic modifications, one positively charged and one positively charged polymer bearing hydrophobic modifications. The structure of the vesicles before and after addition of polymer was investigated by using cryo-TEM. Gel formation was confirmed by using rheological measurements. Drug release was studied using a modified USP paddle method. Gels were observed to form only in the case when catanionic vesicles, most likely with a net negative charge, were mixed with positively charged polymer bearing lipophilic modifications. The release of drug substance from these systems, where the vesicles are not trapped within the gel but constitute a founding part of it, could be significantly prolonged. The drug release rate was found to depend on vesicle concentration to a higher extent than on polymer concentration.  相似文献   

7.
Charging behavior and colloidal stability of amidine latex particles are studied in the presence of poly(sodium styrene sulfonate) (PSS) and KCl. Detailed measurements of electrophoretic mobility, adsorbed layer thickness, and aggregation (or coagulation) rate constant on varying the polymer dose, molecular mass of the polymer, and ionic strength are reported. Polyelectrolyte adsorption leads to the characteristic charge reversal (or overcharging) of the colloidal particles at the isoelectric point (IEP). In accordance with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, uncharged particles tend to aggregate because of van der Waals attraction, whereas charged particles are stabilized by electrical double layer repulsion. Attractive patch-charge interactions originating from the laterally inhomogeneous structure of the adsorbed polymer substantially decrease the suspension stability or even accelerate the aggregation rate beyond diffusion control. These electrostatic non-DLVO forces become progressively important with increasing molecular mass of the polymer and the ionic strength of the solution. At higher polymer dose of typically 10 times the IEP, one observes the formation of a saturated layer of the adsorbed polymer with a thickness of several nanometers. Its thickness increases with increasing molecular mass, whereby the layer becomes increasingly porous. This layer does not seem to be involved in the suspension stabilization, since at such high polymer doses the double layer repulsion has attained sufficient strength to stabilize the suspension.  相似文献   

8.
Tetrapositively charged phthalocyanines and CdTe quantum dots (QDs) capped with thioglycolic acid (TGA) and mercaptopropionic acid (MPA) were synthesized. The response of the tetrapositively charged zinc phthalocyanines in the presence of quantum dots was studied. Aggregation and charge transfer were observed for [tetramethyl-2,(3)-[tetra-(2-mercaptopyridinephthalocyaninato)]zinc(II)]4+ (TmTMPyZnPc), however aggregation proved to be the more prominent process of the two. Fluorescence resonance energy transfer (FRET) was observed with [tetramethyl-2,(3)-[tetra-(2-pyridyloxyphthalocyaninato)]zinc(II)]4+ (TmTPyZnPc). In the FRET study the efficiency of FRET with TmTPyZnPc was determined to be 21% for both MPA and TGA capped CdTe QDs. For the charge transfer study the fluorescence of the quantum dots was quenched by the TmTMPyZnPc used, and from these quenching studies the quenching constants, binding constants and number of binding sites on the quantum dots were determined.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - Employing a combination of a layer-by-layer self-assembly and sol gel methods, a negatively charged silica sol was successfully deposited into the cell...  相似文献   

10.
Branched polyethyleneimine (BPEI) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were used collaboratively to reduce silver nitrate under UV irradiation for the synthesis of positively charged silver nanoparticles. The effects of molar ratio of the ingredients and the molecular weight of BPEI on the particle size and distribution were investigated. The mechanism for the reduction of Ag+ ions in the BPEI/HEPES mixtures entails oxidative cleavage of BPEI chains that results in the formation of positively charged BPEI fragments enriched with amide groups as well as in the production of formaldehyde, which serves as a reducing agent for Ag+ ions. The resultant silver nanoparticles are positively charged due to protonation of surface amino groups. Importantly, these positively charged Ag nanoparticles demonstrate superior SERS activity over negatively charged citrate reduced Ag nanoparticles for the detection of thiocyanate and perchlorate ions; therefore, they are promising candidates for sensing and detection of a variety of negatively charged analytes in aqueous solutions using surface-enhanced Raman spectroscopy (SERS).  相似文献   

11.
We study, using wide-angle and small-angle light scattering techniques, the stability and aggregation/gelation behaviors of denatured filamentous bovine serum albumin pre-aggregates (BSA-PAs), induced by CaCl(2). It is observed that transparent filamentous gels can be formed not only at low CaCl(2) concentrations but also at high CaCl(2) concentrations, while turbid gels are obtained at intermediate CaCl(2) concentrations. Although the filamentous gels at low CaCl(2) concentrations and the turbid gels at intermediate CaCl(2) concentrations are consistent with the literature observations, the filamentous gels at high CaCl(2) concentrations have to be explained by different mechanisms. The latter is attributed to the repulsive hydration interactions originating from increased surface dipoles generated by counterion binding. Since such surface dipole-induced hydration is very short-range and occurs mainly on charged or polar patches of proteins (thus protected from aggregation), the aggregation of the filamentous BSA-PAs at hydrophobic patches at the two ends is still possible, leading to formation of the filamentous gels.  相似文献   

12.
The absorption of vinyl chloride (VC) on surface-treated light-grade and nano-scale calcium carbonate (CaCO3), and VC suspension polymerization in the presence of CaCO3 were carried out in a 5 L autoclave. It showed that the absorption of VC on CaCO3 increased with the partial pressure of VC up to a critical point. Nano-scale CaCO3 was more effective in absorbing VC than light-grade CaCO3 at the same temperature and partial pressure of VC due to its greater surface area. The absorption behavior of VC/CaCO3 follows Langmuir isothermal equation. In view of the absorption of VC on CaCO3, Xie’s model [J. Appl. Polym. Sci. 34 (1987) 1749] was modified to relate pressure, temperature, the amount of CaCO3 and conversion for VC suspension polymerization in the presence of CaCO3. The model simulation showed that VC conversions at the pressure drop point and at a certain pressure drop decreased with the increase of the amount of added CaCO3, and the influence of nano-scale CaCO3 was greater than that of light-grade CaCO3. The simulated VC conversions fitted well with that obtained from VC suspension polymerizations in the presence of different amounts of light-grade or nano-scale CaCO3.  相似文献   

13.
We have designed and synthesized a series of modular ligands based on poly(ethylene glycol) (PEG) coupled with functional terminal groups to promote water-solubility and biocompatibility of quantum dots (QDs). Each ligand is comprised of three modules: a PEG single chain to promote hydrophilicity, a dihydrolipoic acid (DHLA) unit connected to one end of the PEG chain for strong anchoring onto the QD surface, and a potential biological functional group (biotin, carboxyl, and amine) at the other end of the PEG. Water-soluble QDs capped with these functional ligands were prepared via cap exchange with the native hydrophobic caps. Homogeneous QD solutions that are stable over extended periods of time and over a broad pH range were prepared. Surface binding assays and cellular internalization and imaging showed that QDs capped with DHLA-PEG-biotin strongly interacted with either NeutrAvidin immobilized on surfaces or streptavidin coupled to proteins which were subsequently taken up by live cells. EDC coupling in aqueous buffer solutions was also demonstrated using resonance energy transfer between DHLA-PEG-COOH-functionalized QDs and an amine-terminated dye. The new functional surface ligands described here provide not only stable and highly water-soluble QDs but also simple and easy access to various biological entities.  相似文献   

14.
15.
The self-diffusion coefficient of ions of the charge- and size-symmetric +1:-1 (or +2:-2) electrolyte was studied in the presence of ionic obstacles (matrix) representing disordered media. For this purpose the Brownian dynamics method was used, complemented with the replica Ornstein-Zernike theory for the partly-quenched systems. The matrix was prepared by a rapid quench of the size-symmetric +1:-1 (in few cases also of +2:-2) electrolyte solution being in equilibrium at (temperature, relative permittivity) T0, epsilon. Within the matrix the charge- and size-symmetric (+1:-1 or +2:-2) electrolyte at T1, epsilon1 was distributed. This component was fully mobile (annealed) and in thermodynamic equilibrium with the matrix. In this study a special attention was paid to the self-diffusion of the annealed ions. The ratio D/D degrees, where D degrees is the self-diffusion coefficient of ions at infinite dilution, has been studied for various model parameters varying the concentration of all species in the system. The presence of charged obstacles decreases the self-diffusion of the annealed electrolyte; the D/D degrees values are lower in the partly-quenched mixtures than in the fully annealed electrolyte of the same concentration. In the investigated range of concentrations and solvent dielectric constants, the D/D degrees values first increased with the increased concentration of annealed electrolyte present and then decreased. An increase of the strength of the Coulomb interaction between annealed ions, or between annealed and quenched charges, yielded a decrease of the self-diffusion. In the range of concentrations investigated in this work, the decrease is mainly due to the Coulomb interaction with the matrix, since the presence of neutral obstacles did not modify the diffusion properties with respect to the situation without obstacles.  相似文献   

16.
We have investigated the formation of complexes between negatively charged niosomal vesicles (hybrid niosomes), built up by dicethylphosphate [DCP], Tween 20 and Cholesterol, and three linear differently charged cationic polyions, such as alpha-polylysine, epsilon-polylysine, and polyethylvinylpyridinium bromide [PEVP], with two different substitution degrees. Our aim is to investigate the interaction mechanism between anionic-nonionic vesicles (hybrid niosomes) and linear polycations, characterizing the resulting aggregates in view of possible applications of these composite colloidal particles as vectors for multidrug delivery. In order to explore the aggregation behavior of the complexes and to gain information on the stability of the single niosomal vesicles within the aggregates, we employed dynamic light scattering (DLS), laser Doppler electrophoretic measurements, and fluorescence measurement techniques. The overall phenomenology is well described in terms of the re-entrant condensation and charge inversion behavior, observed in different colloidal systems. The aggregate size and overall charge depend on the charge ratio between vesicles and polyions, and the aggregates reach their maximum size at the point of charge inversion (re-entrant condensation). While the overall phenomenology is similar for all three polycations investigated, the stability and the integrity of the hybrid niosomal vesicles forming the aggregates strongly depend on the chemical structure of the polycations. The role of the polycations in the aggregation process is discussed by identifying specific interactions with the niosomal membrane, pointing out their importance for possible applications as drug delivery vectors.  相似文献   

17.
The variations in electrical conductivity and surface tension of planar bilayer lipid membranes (BLMs) sensitized by a haematoporphyrin dimethylether (HpDME) on visible light irradiation are reported. The irradiation of BLMs immediately leads to a decrease in membrane surface tension. On irradiation the conductivity of BLMs remains constant for a certain period of time (induction time), followed by an increase, terminated by membrane breakage. The induction time is not dependent on stirring of the solution, the addition of azide or ferricyanide to the solution, the addition of antioxidant to the lipid or substitution of air for argon in the cell. The induction time decreases for repeated irradiations or for any new BLM formed in the same cell immediately after the previous membrane has been broken. The conductivity shift consists of reversible and irreversible components. These results suggest that the irradiation of BLMs sensitized by HpDME leads to an accumulation of photoproducts in the membrane which induce pore formation and to a decrease in BLM stability when the concentration of the photoproducts exceeds a critical level.  相似文献   

18.
Effects of ferric chloride (FeCl3) on photodegradation of high-density polyethylene (PE) were investigated by using ESR and infrared spectrometry. In the system with irradiation at light of λ > 220 nm, PE irradiated at 77°K yielded an 8-line spectrum, the intensity of which was markedly weakened by using FeCl3 with the sample, indicating a distinct depression of radical formation. On the other hand, PE with the use of FeCl3 yielded radicals under irradiation only with light of λ > 300 nm, showing a singlet spectrum with a line width of 15 gauss. For photooxidized PE, almost the same effect of FeCl3 was observed. On irradiation at room temperature, PE samples with and without FeCl3 showed a singlet spectrum with line widths of 15 and 25 gauss, respectively. On the other hand, the unsaturated double bond contained in a small amount in PE sample was observed by infrared study to be decreased with photoirradiation; however, the decrease was sharply depressed with the addition of FeCl3 to the sample. The degradation of carbonyl group in a photooxidized sample was markedly affected by photoirradiation, and the decay was obviously reduced for the sample on addition of FeCl3. It is concluded that FeCl3 works upon photodegradation of PE to enhance the Norrish type II reaction and to accelerate the formation of unsaturated double bond in the chain.  相似文献   

19.
Positively charged supramolecular aggregates formed in vacuo by n AOTNa (sodium bis(2-ethylhexyl)sulfosuccinate) molecules and n(c) additional sodium ions, i.e. [AOT(n)Na(n+n(c))](n(c)), have been investigated by molecular dynamics (MD) simulations for n = 1-20 and n(c) = 0-5. Statistical analysis of physical quantities like gyration radii, atomic B-factors and moment of inertia tensors provides detailed information on their structural and dynamical properties. Even for n(c) = 5, all stable aggregates show a reverse micelle-like structure with an internal solid-like core including sodium counterions and surfactant polar heads surrounded by an external layer consisting of the surfactant alkyl chains. Moreover, the aggregate shapes may be approximated by rather flat and elongated ellipsoids whose longer axis increases with n and n(c). The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. In one particular case, for which experimental findings are available in the literature, a good agreement is found with the present fragmentation data.  相似文献   

20.
In this paper the immobilization of small unilamellar DMPC/GM1 lipid vesicles containing a water-soluble bodipy dye is described. The binding of the complete alphabeta toxin expressed by Vibrio cholerae to the attached vesicles was measured using Surface Plasmon Resonance (SPR) and a value of the dissociation constant K d obtained. Further measurements showed that the interaction of both the alphabeta-toxin and the beta-subunit alone resulted in the permeation of the lipid membrane, with release of a fluorophore contained within the vesicle being measured by combined SPR and Surface Plasmon enhanced Fluorescence Spectroscopy (SPFS). The leakage of dye through the membrane, measured by following the change in fluorescence, was fitted to a simple diffusion model. Finally, SPFS measurements of the effect of europium(III) chloride (EuCl 3) showed that cholera toxin binding and subsequent membrane permeation could be blocked by 1 micromol dm (-3) europium chloride. In view of the low oral toxicity of europium chloride, we speculate on the potential pharmaceutical applications of this molecule in the treatment of cholera infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号