首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All-fiber wavelength-swept laser near 2 μm   总被引:1,自引:0,他引:1  
Geng J  Wang Q  Wang J  Jiang S  Hsu K 《Optics letters》2011,36(19):3771-3773
We report, for the first time to our knowledge, an all-fiber wavelength-swept Tm-doped laser based on a fiber Fabry-Perot tunable filter in the 2 μm spectral region. The laser wavelength can be continuously tuned over 200 nm from 1840 to 2040 nm in a short period of time. The demonstrated tuning speed was 12.5 μm/s with a tuning efficiency of 17.5 nm/V. The spectral linewidth of the laser was measured to be approximately 300 MHz or 0.01 cm(-1). This kind of laser can find potential applications in both high-resolution laser spectroscopy and tunable mid-IR generation via nonlinear frequency conversion.  相似文献   

2.
Present work explores the mid-IR photodetection mechanism in III–V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20–50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron–photon system to explain both mid and far IR peak.  相似文献   

3.
The frequency noise properties of commercial distributed feedback quantum cascade lasers emitting in the 4.6 μm range and operated in cw mode near room temperature (277 K) are presented. The measured frequency noise power spectral density reveals a flicker noise dropping down to the very low level of <100 Hz(2)/Hz at 10 MHz Fourier frequency and is globally a factor of 100 lower than data recently reported for a similar laser operated at cryogenic temperature. This makes our laser a good candidate for the realization of a mid-IR ultranarrow linewidth reference.  相似文献   

4.
Hard Cu Kα X-ray radiation was generated with a millijoule and high-repetition-rate Ti: sapphire laser in air, helium or vacuum (2.7–1.3×104 Pa) ambient. The characteristic X-ray was obtained by focusing the 0.06–1.46 mJ/pulse, 100 fs, 1 kHz repetition femtosecond laser onto a solid copper target to a spot 4.8 μm in diameter. The relationship between Kα X-ray conversion efficiency and atmospheric conditions was explained with a simple electron collision model that suggested that the electron mean free path is an important parameter in the generation of ultrafast pulsed X-rays in any ambient condition. We also demonstrated a high-intensity X-ray source working in helium at atmospheric pressure.  相似文献   

5.
Neely TW  Johnson TA  Diddams SA 《Optics letters》2011,36(20):4020-4022
We describe a tunable broadband mid-IR laser source based on difference-frequency mixing of a 100?MHz femtosecond Yb:fiber laser oscillator and a Raman-shifted soliton generated with the same laser. The resulting light is tunable over 3.0?μm to 4.4?μm, with a FWHM bandwidth of 170?nm and maximum average output power up to 125?mW. The noise and coherence properties of this source are also investigated and described.  相似文献   

6.
The development and spectroscopic performance evaluation of an ultra-sensitive, mid-IR spectrometer is reported. The laser system is based upon difference-frequency generation (DFG) at ~3.5 μm by mixing a DFB diode laser at 1562 nm and a DFB fiber laser at 1083 nm using a periodically poled LiNbO3 crystal. DFG radiation was coupled to a 100?m optical path length astigmatic Herriott cell. Sensitive and selective spectroscopic detection of formaldehyde was performed with second-harmonic detection using Peltier-cooled HgCdTe detectors. By applying computer lock-ins, dual-beam optical noise subtraction, focus matching, thermal stabilization, active wavelength control, and advanced signal processing a sensitivity corresponding to an absorbance ~1.6×10-7 is achieved for 260 s of averaging.  相似文献   

7.
A laser plasma X-ray source of narrow spectral range in the water-window region, is reported using a 50–50 (atomic fraction) mixture of gold-copper mix-Z planar target. Plasma was produced using the second harmonic beam of an Nd:glass laser focused to an intensity ~1013 W/cm2 on the target. The spectrum of the plasma radiation transmitted through a free-standing 0.4 μm aluminium/0.9 μm vanadium X-ray filter foil was measured to lie in the narrow-band of 24–26 Å. This provides a debris-free X-ray dose of 2–3 mJ/sr which can be used for single shot X-ray imaging of live biological samples.  相似文献   

8.
A high-power, narrow-linewidth Yb fiber laser with a fiber Bragg grating (FBG) pumped difference frequency generation (DFG) in a periodically poled lithium niobate (PPLN) crystal was investigated in detail. A mid-IR power of approximately 2.3 microW at 3.3 micrometers with a slope efficiency of 0.85 mW/W2 was achieved. A Doppler-broadened absorption spectrum of CH4 at 3038.497 cm-1 (3.2911 micrometers) was obtained with a 0.1-m long-gas cell at a pressure of 133 Pa. The linewidth of the DFG source was evaluated to be less than 96 MHz from the observed spectral linewidth. Real-time monitoring of CH4 (approximately 1.78 ppm) in ambient air in a multipass cell which has an optical path length of 10 m was also demonstrated.  相似文献   

9.
The development and characterization of a compact pulsed mid-IR laser source for sensitive on-line trace-gas analyses in the 3–4 μm wavelength range is reported. The source is based on an advantageous difference-frequency mixing configuration in periodically poled LiNbO3 (PPLN) with a cw external-cavity diode laser (ECDL; 810–830 nm) for broad and accurate tunability and a diode-pumped passively Q-switched Nd:YAG laser (1064 nm) for high mid-IR peak power. With 5 mW cw pump and 4.7 kW signal peak power incident on a 19 mm long PPLN crystal, a maximum of 360 μW mid-IR peak power was generated. The narrowband (∼150 MHz) radiation was saturated by a factor of 15 compared with the nonsaturated case due to depletion of the pump laser radiation. This results in a very high amplitude stability of the generated mid-IR power and thus in a high detection sensitivity. A minimum detectable absorption coefficient of 2.8×10−8 cm−1 was achieved in combination with a 36.2 m multipass cell in an averaging time of 20 s, as demonstrated by on-line analyses of formaldehyde traces near 3.53 μm.  相似文献   

10.
We fabricated several near-infrared Si laser devices (wavelength ~1300 nm) showing continuous-wave oscillation at room temperature by using a phonon-assisted process induced by dressed photons. Their optical resonators were formed of ridge waveguides with a width of 10 μm and a thickness of 2 μm, with two cleaved facets, and the resonator lengths were 250–1000 μm. The oscillation threshold currents of these Si lasers were 50–60 mA. From near-field and far-field images of the optical radiation pattern, we observed the high directivity which is characteristic of a laser beam. Typical values of the threshold current density for laser oscillation, the ratio of powers in the TE polarization and TM polarization during oscillation, the optical output power at a current of 60 mA, and the external differential quantum efficiency were 1.1–2.0 kA/cm2, 8:1, 50 μW, and 1 %, respectively.  相似文献   

11.
We have demonstrated that we believe to be the first ring ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a pulsed Ho:LuAG laser. The maximum output power of the ring ZGP OPO laser was 5.51 W at 13.1 W incident Ho pump power, corresponding to a slope efficiency of 59.0 %. The ZGP OPO laser produced 14 ns mid-infrared pulses in the 3.72–4.01 and 4.37–4.75 μm spectral regions simultaneously. In addition, the continuous wave Ho:LuAG laser generated 26.5 W of linearly output at 2,094.4 nm at the absorbed Tm pump power of 49.9 W.  相似文献   

12.
A widely tunable mode-locked all-fiberized Yb-doped fiber laser with near-transform-limited spectrum linewidth is used. It consists of a tunable fiber Bragg grating (TFBG) and a fiber-coupled LiNbO3 phase modulator (PM) in a linear cavity. The TFBG is used to achieve tunable emission wavelength, and the intracavity PM is used to achieve actively mode-locking operation. We have experimentally demonstrated that the laser-emitting wavelength can be tuned between 1,041 and 1,091 nm with power fluctuation less than 3 dB. The temporal width of the laser pulse is about 1 ns, and the pulses are near transform-limited with a spectral linewidth of 1.3 GHz. The results may find useful application in optical communication and optical measurement system.  相似文献   

13.
Continuous tuning of the lasing wavelength from 2350 to 3450 nm in the cw Cr2+:CdSe laser is demonstrated. It is shown that the laser efficiently operates at a wavelength of 3.28 μm, which is promising for the methane optical frequency standard. The single-frequency mode of the laser with a lasing linewidth not exceeding 60 MHz is implemented in this spectral range.  相似文献   

14.
Actively mode-locked electron-beam-sustained-discharge CO laser producing a train of ∼5-15 ns (FWHM) spikes following with repetition rate 10 MHz for both single-line and multiline mode of operation in the mid-IR range of ∼5 μm was experimentally studied. Total laser pulse duration was ∼0.5 ms for both mode-locked and free-running laser. Specific output energy in multiline CO laser mode of operation was up to 20 Jl−1 Amagat−1 and the laser efficiency up to 3.5%. The active mode-locking was achieved for single-line CO laser mode of operation in spectral range 5.2-5.3 μm. This sort of radiation can be used for pumping an optical parametric amplifier for optical stochastic cooling in relativistic heavy ion collider, for laser ablation, and for studying vibrational and rotational relaxation of CO and NO molecules.  相似文献   

15.
We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO? (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO? cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.  相似文献   

16.
We present a traveling-wave-type optical parametric amplifier (OPA) pumped at 1.03 μm by a Yb:KGW laser that produces tunable high-energy pulses of 6.5–4 μJ in the mid-infrared (mid-IR) region from 3.6 to 7 μm. Pumping with negatively chirped pulses generates nearly transform-limited (TL) mid-IR pulses of 300–330 fs length. Pumping with TL pulses of 200 fs not only decreases the output energy by a factor of 1.5, but also decreases the mid-IR pulse-length to 160 fs after additional compression. The compact and simple OPA setup is ideal for femtosecond infrared experiments in the fingerprint region.  相似文献   

17.
Four-wave mixing (FWM) of femtosecond near-infrared laser pulses and its second harmonic in the filamentation regime is shown to give rise to ultrashort field waveforms in the mid-infrared with pulse widths as short as a half of the field cycle and produce ultrabroadband supercontinuum spectra stretching from the mid-IR to the terahertz region. Generation of 7-fs pulses centered at 4.35 μm is demonstrated by a two-color filamentation experiment, where the 25-fs, 800-nm fundamental-wavelength output of a Ti: Sapphire laser is mixed with its second harmonic. The spectral and temporal properties of the mid-IR waveforms, as well as their emission pattern, are consistent with the FWM scenario of frequency conversion generalized to include the Kerr effect and ionization-induced refractive-index modulation.  相似文献   

18.
Optical-feedback cavity-enhanced absorption spectroscopy is demonstrated in the mid-IR by using a quantum cascade laser (emitting at 4.46 μm). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity field turns out to be particularly advantageous in this spectral range: It allows strong cavity transmission, which compensates for low light sensitivity, especially when using room-temperature detectors. We obtain a noise equivalent absorption coefficient of 3 × 10(-9)/cm for 1 s averaging of spectra composed by 100 independent points. At 4.46 μm, this yields a detection limit of 35 parts in 10(12) by volume for N(2)O at 50 mbar, corresponding to 4 × 10(7) molecules/cm(3), or still to 1 fmol in the sample volume.  相似文献   

19.
We have successfully observed high-resolution spectra of spin-forbidden electric quadrupole transition (1 S 03 D 2) in ytterbium (174Yb) atoms. The differential light shifts between the 1 S 0 and the 3 D 2 states in a far-off resonant trap at 532 nm are also measured. For the spectroscopy, we developed simple, narrow-linewidth, and long-term frequency stabilized violet diode laser systems. Long-term drifts of the excitation laser (404 nm) is suppressed by locking the laser to a length stabilized optical cavity. The optical path length of the cavity is stabilized to another diode laser whose frequency is locked to a strong 1 S 01 P 1 transition (399 nm) of Yb. Both lasers are standard extended-cavity diode lasers (ECDLs) in the Littrow configuration. Since the linewidth of a violet ECDL (~10 MHz) is broader than a typical value of a red or near infra-red ECDL (<1 MHz), we employ optical feedback from a narrow-band Fabry–Perot cavity to reduce the linewidth. The linewidth is expected to be <20 kHz for 1 ms averaging time, and the long-term frequency stability is estimated to be ~200 kHz/h.  相似文献   

20.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号