首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

2.
The presence of an intense Gaussian laser beam gives rise to a ponderomotive force on electrons in a collisionless plasma, leading to a redistribution of electron density along the wave-front and consequently to an intensity dependent dielectric constant which saturates with increasing intensity. The intensity dependent dielectric constant is responsible for beam propagation in an oscillatory waveguide. It is seen that (i) a beam of radiusr 0 less thanr 0min (?c/ω p) cannot be focused in the plasma regardless of its power, (ii) minimum dimension of oscillatory waveguide increases with increasing power of the beam. Similar results are also obtained for collisional plasma where nonlinearity arises due to nonuniform heating and consequent redistribution of carriers.  相似文献   

3.
The authors have investigated the self-focusing and defocusing of first six TEM0p Hermite-Gaussian laser beams in collisionless plasma. In case of collisionless plasma the nonlinearity in the dielectric constant is mainly due to the ponderomotive force. It is found that modes with odd p-values defocuses and that with even p-values exhibit oscillatory as well as defocusing character of beam-width parameters variation during their propagation in collisionless plasma. The entire theoretical formulation is established under parabolic wave equation approach. The numerical computation is completed by using fourth order Runge-Kutta method. Finally the behavior of beam-width parameters with the dimensionless distance of propagation is presented graphically.  相似文献   

4.
The influence of relativistic-ponderomotive nonlinearities and the plasma inhomogeneity on the nonlinear interaction between a high-power laser beam and a warm underdense plasma are studied. It is clear that the relativistic ponderomotive force and the electron temperature modify the electron density distribution and consequently change the dielectric permittivity of the plasma. Therefore, by presenting the modified electron density and the nonlinear dielectric permittivity of the warm plasma, the electromagnetic wave equation for the propagation of intense laser beam through the plasma is derived. This nonlinear equation is numerically solved and the distributions of electromagnetic fields in the plasma, the variations of electron density, and plasma refractive index are investigated for two different background electron density profiles. The results show that the amplitude of the electric field and electron density oscillations gradually increase and decrease, during propagation in the inhomogeneous warm plasma with linear and exponential density profiles, respectively, and the distribution of electron density becomes extremely sharp in the presence of intense laser beam. It is also indicated that the electron temperature and initial electron density have an impact on the propagation of the laser beam in the plasma and change the plasma refractive index and the oscillations' amplitude and frequency. The obtained results indicate the importance of a proper choice of laser and plasma parameters on the electromagnetic field distributions, density steepening, and plasma refractive index variations in the interaction of an intense laser beam with an inhomogeneous warm plasma.  相似文献   

5.
The propagation of intense laser pulses in a plasma is discussed in terms of a constant shape, paraxial ray approximation. Self-focusing due to ponderomotive forces and relativistic effects is investigated. It is found that the stationary self-focusing behaviour of each mechanism treated separately is similar, with several orders of magnitude difference in critical power. In stationary self-focusing due to the combined mechanisms, complete saturation of ponderomotive self-focusing prevents the occurrence of relativistic effects. Self-focusing lengths and minimum radii are given for a large range of beam powers. A characteristic focal spot radius is found which depends only on the plasma density.  相似文献   

6.
This article investigates nonlinear self-focusing of an intense right hand circularly polarized Gaussian profile laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless and unmagnetized warm quantum plasma. The nonlinear propagation equation for laser pulse in plasma has been derived. Then, the evolution differential equation for laser spot-size was obtained with considering the parabolic equation approach under the Wentzel-Kramers-Brillouin and paraxial ray approximations. This differential equation was solved numerically by fourth-order Runge-Kutta method. It is shown that our solution confirms the results of the self-focusing of the laser pulse in a weakly relativistic ponderomotive regime in cold quantum plasma in extreme conditions. Numerical results indicate that self-focusing of the laser pulse in the presence of relativistic and ponderomotive nonlinearity inside warm quantum plasma is improved in comparison with relativistic and ponderomotive cold quantum plasma.  相似文献   

7.
This paper presents a scheme for second harmonic generation (SHG) of an intense Cosh‐Gaussian (ChG) laser beam in thermal quantum plasmas. Moment theory approach in W.K.B approximation has been adopted in deriving the differential equation governing the propagation characteristics of the laser beam with distance of propagation. The effect of relativistic increase in electron mass on propagation dynamics of laser beam has been incorporated. Due to relativistic nonlinearity in the dielectric properties of the plasma, the laser beam gets self‐focused and produces density gradients in the transverse direction. The generated density gradients excite electron plasma wave (EPW) at pump frequency that interacts with the incident laser beam to produce its second harmonics. Numerical simulations have been carried out to investigate the effects of laser parameters on selffocusing of the laser beam and hence on the conversion efficiency of its second harmonics. Simulation results predict that within a specific range of decentered parameter the ChG laser beams show smaller divergence as they propagate and, thus, lead to enhanced conversion efficiency of second harmonics. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Zhou CT  He XT  Chew LY 《Optics letters》2011,36(6):924-926
When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber.  相似文献   

9.
We studied the scaling laws for slow-electron acceleration driven by an intense laser pulse in a vacuum, the ponderomotive acceleration scenario (PAS) scheme. With 3D test particle simulation by numerically solving the relativistic Lorentz–Newton equation of motion, the maximum electron energy gain was found to be proportional to the laser intensity (a0), the laser beam width (w0), and inversely proportional to the laser pulse duration (τ). Theoretical analyses and a physical explanation based on the ponderomotive potential model (PPM) are presented. PACS 42.50.Vk; 41.75.Jv; 42.60.Jf  相似文献   

10.
The combined effect of relativistic and ponderomotive nonlinearities on the self‐focusing of an intense cosh‐Gaussian laser beam (CGLB) in magnetized plasma have been investigated. Higher‐order paraxial‐ray approximation has been used to set up the self‐focusing equations, where higher‐order terms in the expansion of the dielectric function and the eikonal are taken into account. The effects of various lasers and plasma parameters viz. laser intensity (a0), decentred parameter (b), and magnetic field (ωc) on the self‐focusing of CGLB have been explored. The results are compared with the Gaussian profile of laser beams and relativistic nonlinearity. Self‐focusing can be enhanced by optimizing and selecting the appropriate laser‐plasma parameters. It is observed that the focusing of CGLB is fast in a nonparaxial region in comparison with that of a Gaussian laser beam and in a paraxial region in magnetized plasma. In addition, strong self‐focusing of CGLB is observed at higher values of a0, b, and ωc. Numerical results show that CGLB can produce ultrahigh laser irradiance over distances much greater than the Rayleigh length, which can be used for various applications.  相似文献   

11.
The optical guiding of a moderately intense laser pulse in a parabolic preformed plasma channel is analyzed by means of the variational method.Relativistic,ponderomotive and their coupling nonlinearities are included.The conditions for periodic defocusing and focusing,as well as constant spot size propagation are given.It is found that the laser focusing is released by the coupling of relativistic and ponderomotive nonlinearities.  相似文献   

12.
The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-?m 1016-W/cm2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired laser-matter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive.  相似文献   

13.
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams(HGBs) in collisionless plasma and its effect on the generation of electron plasma wave(EPW) and electron acceleration process,when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams,which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams.  相似文献   

14.
A (3+1 )-dimensional Kadomtse-Petviashvili (KP) equation for nonlinearly interacting intense laser pulses with an electron-positron (e-p) plasma is derived. Taking into account the combined action of the relativistic particle mass increase and the relativistic light ponderomotive force, using the perturbation method, and allowing different types solution, we discuss the analytical solution of (3+1)-dimensional KP-I equation, and give the approximate solutions of vector potential of the intense laser pulse in e-p plasma. Our results may be significantly useful in understanding the nonlinear wave propagation and interaction of intense laser beams in an e-p plasma.  相似文献   

15.
用3维粒子模拟程序研究了相对论强激光和高密度等离子体相互作用引起的电磁不稳定。数值模拟表明,在线偏振强激光作用下,等离子体表面出现了电磁不稳定性。形成的不稳定结构随时间发展和激光功率密度的增加进一步深入到等离子体内部,最终使等离子体表面处激发饱和自生磁场。这种由电子速度各向异性而产生的自生磁场对激光有质动力推开电子时所形成的电子热流产生抑制作用,并将直接影响电子加速效率。  相似文献   

16.
A chirped laser pulse indicates that the laser frequency changes over the duration of the pulse: a positively (negatively) chirped pulse implies that the laser frequency increases (decreases) with time. In this paper, we use a simplified, fully relativistic hydrodynamic approach to simulate the influence of chirp on the propagation of a femtosecond relativistic laser pulse in underdense plasma. Based on this simplified cold‐fluid model, the influence of chirp on the main dynamics of the laser pulse, such as self‐steepening, red‐shift in the leading edge, variation of the frequency chirp, and the generated wakefields can be studied self‐consistently. The simulation results show that a pulse with a positive chirp results in a larger increment in the intensity parameter a0 when propagating a certain distance into an underdense plasma compared with an un‐chirped and a negatively chirped pulse, which is largely because of a much greater forward shift of the peak amplitude and more severe pulse self‐steepening effect due to the frequency red‐shift at the leading edge when exciting a plasma wave. The ponderomotive force, which relates to the first‐order differential of the laser pulse intensity envelope, is expected to be stronger for a positively chirped pulse because of its steeper leading edge and larger intensity parameter a0. As a result, the wakefield driven by the positively chirped laser pulse is more intense than that driven by an un‐chirped and a negatively chirped laser pulse, which is confirmed by our self‐consistent hydrodynamic simulation.  相似文献   

17.
In this paper, the propagation of Cosh Gaussian laser beam and its interaction with isothermal plasma without temperature gradient as well as the effect of the exponential electron temperature gradient are investigated. Here the ponderomotive nonlinearity force is effective mechanism. This force can modify the electron density distribution. All the investigations are carried out for different initial plasma temperatures. Using Maxwell’s equations we obtained the nonlinear second-order differential equation of the dimensionless beam-width parameter (f) on the distance of propagation for several initial electron temperatures and exponential temperature variations. These equations are solved numerically by taking WKB and paraxial approximation. Under the effect of initial electron temperature, self-focusing and defocusing of hyperbolic cosine (cosh) Gaussian laser beam is distinguished. Furthermore, the exponential temperature gradient cause to stationary propagation mode breaks, and self-focusing or defocusing properties is observable.  相似文献   

18.
We describe an experiment demonstrating XUV amplification following collisional excitation in a capillary discharge plasma irradiated by a picosecond IR laser pulse. Guiding and temporally resolved transmission of the pump laser beam are also demonstrated and analysed. The short pump laser pulse heated rapidly the electrons producing amplification in the 3p1S0–3s1P1 transition of Ne-like sulphur at 60.84 nm. The estimated gain–length product was equal to 6.8, while the beam divergence reached 2.5 mrad for 30 mm capillary. This new, hybridly pumped collisional soft X-ray laser with the transient gain offers a new way towards efficient table-top XUV sources.  相似文献   

19.
Presently available high-power laser pulses of ponderomotive energy U p ? 2mc 2 should permit the fundamental processes of quantum electrodynamics in such fields, in particular, the formation of electron-positron pairs in impacts of laser pulses with highly charged ions, to be observed. We evaluate the highly nonlinear production rates of this process and investigate the most favorable conditions of pair production, in particular, either along the direction of linear polarization or in the propagation direction of the laser pulse. For femtosecond radiation pulses, it is possible to represent the laser beam by a monochromatic and linearly polarized electromagnetic plane wave. This approximation considerably simplifies the calculations required.  相似文献   

20.
王伟民  郑春阳 《物理学报》2006,55(1):310-320
讨论高斯型强激光束在具有初始柱对称密度分布的低密度冷等离子体中传播时,等离子体密度分布的不同对激光自聚焦的影响.推导出可以判断更有利于自聚焦发生的评价函数,这样通过比较不同密度分布的评价函数值就可以判断哪种密度分布更有利于自聚焦的发生.为了说明这种方法的有效性,对评价函数进行分析得出:在相同的激光场中等离子体柱的轴心密度给定时(以激光的光轴为轴),离轴越远的地方密度越大及密度变化越陡,自聚焦越容易发生;相对论效应与有质动力共同作用比相对论的单独作用,自聚焦更容易发生.数值模拟证实了评价函数能准确的预测在不 关键词: 自聚焦 相对论效应 有质动力 评价函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号