首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The formation of laser-induced periodic surface structures (LIPSS) on titanium upon irradiation with linearly polarized femtosecond (fs) laser pulses (τ=30 fs, λ=790 nm) in an air environment is studied experimentally and theoretically. In the experiments, the dependence on the laser fluence and the number of laser pulses per irradiation spot has been analyzed. For a moderate number of laser pulses (N<1000) and at fluences between ~0.09 and ~0.35 J/cm2, predominantly low-spatial-frequency-LIPSS with periods between 400 nm and 800 nm are observed perpendicular to the polarization. In a narrow fluence range between 0.05 and 0.09 J/cm2, high-spatial-frequency-LIPSS with sub-100-nm spatial periods (~λ/10) can be generated with an orientation parallel to the polarization (N=50). These experimental results are complemented by calculations based on a theoretical LIPSS model and compared to the present literature.  相似文献   

2.
The ablation threshold and Laser-induced periodic surface structure (LIPSS) formation on copper thin film were investigated using a picosecond laser (Nd:YAG laser: 266 nm, 42 ps, 10 Hz). We show that the ablation threshold varies with respect to the number of laser shots (N) on two different substrates. The single-shot ablation threshold was estimated to be close to 170 ± 20 mJ/cm2. The incubation coefficient was estimated to be 0.68 ± 0.03 for copper thin films on silicon and glass substrates. In addition, morphology changes of the ablated regions, in the same spot area, were studied as a function of fluence and number of laser shots. An intermediate structure occurred with a mix of low spatial frequency LIPSS (LSFL), high spatial frequency LIPSS (HSFL) and regular spikes at a fluence F < 250 mJ/cm2 and 1,000 < N ≤ 10.000 shots. LSFL was observed with a spatial period close to the irradiation wavelength and an orientation perpendicular to the laser polarization, and HSFL with a spatial period of ~120 nm and a parallel orientation. Lastly, the global relationship between the laser parameters (i.e. fluence and number of shots) and LIPSS formation was established in the form of a 2D map.  相似文献   

3.
The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 0 and ~4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay-dependent decrease of the low spatial frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination is quantified individually.  相似文献   

4.
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed.  相似文献   

5.
Ultrashort laser pulse interaction with the surface of silicon wafer in air and water environments is investigated. Ti:sapphire laser with 40 femtosecond laser pulses at 790 nm and 10 Hz repetition rate was used. The ablation threshold of the silicon surface in the air was determined to be about 0.28 J cm?2. The surface morphology was studied by using scanning electron microscope images. The size of the regular ripples formed in the air environment is a little smaller than the laser wavelength. Due to the nonlinear interaction and self-focusing before the target, the ripples size reduced to nearly a half of the laser wavelength in the water. Moreover, the spikes’ structure formation and their diameter in air and water were studied. Two regimes for spike formation in water are proposed that can explain the anomalous decrease of the spikes’ diameter in higher fluence. During the interaction of single linearly polarized femtosecond laser pulse with the surface, an irregular ripple formation that called circular ripple is observed. This structure which is a result of radiation pressure implies to the surface by the end of the pulse. A new physical model for interpretation of the circular ripples formation based on the ponderomotive force of an ultrashort pulse laser is proposed which can predict the size of the circular ripples. The calculated results are in accordance with our experimental findings.  相似文献   

6.
In self-organized nanostructure formation upon femtosecond laser ablation, the laser polarization is an important control parameter. Experiments on fluoride crystals, using circular and elliptical polarization, study this influence in more detail. For circular polarization, spherical nanoparticles of about 100 nm diameter are formed. With increasing ellipticity, longer and longer ordered chains and linear structures are generated, oriented perpendicular to the long axis of the polarization ellipse. A similar effect occurs when, for circular polarization, the angle of incidence is varied from normal to 45°: the s-component of the incident field, not attenuated by the projection, determines length and orientation of the ordered ripples. However, surface defects like scratches exert an even stronger influence on the ripples orientation than the polarization, resulting in curved structures bending from polarization-controlled to defect-controlled orientation. Since the structure formation takes place only long after the end of the laser pulse, a certain electrical field memorizer is required to account for this polarization dependence. A promising approach assumes directional atomic surface diffusion anisotropies, arising, e.g. from plasmon-coupled metal–colloid arrays.  相似文献   

7.
Considering self-organized surface pattering upon multi-pulse femtosecond laser irradiation, in particularly the strong dependence of ripples orientation on the laser polarization, we present numerical simulations from an adopted surface erosion model and compare the result to our experimental data on laser-induced nanostructures formation. We present the surface morphologies obtained by this model for different polarizations of the incident laser electric field and show good agreement with ripple formation produced by laser ablation experiments. The correlation of ripples orientation with laser polarization can be described within a model where the polarization causes a breaking of symmetry at the surface. Further we discuss a time evolution of pattern formation. Our results support the non-linear self-organization mechanism of pattern formation on the surface of solids.  相似文献   

8.
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm2 for copper and 0.15 J/cm2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.  相似文献   

9.
李志明  王玺  聂劲松 《物理学报》2017,66(10):105201-105201
基于Sipe-Drude模型和表面等离子体激元(SPP)的干涉理论分别对单脉冲飞秒激光诱导硅表面形成低频率周期性波纹进行分析研究.探究了波长800 nm、脉宽150 fs的单个飞秒激光烧蚀硅造成不同激发水平下波纹形貌的变化,考虑到材料的光学性质变化(由Drude模型得到的介电常数变化),引入包含双温方程的电子数密度模型.计算结果表明,Sipe-Drude和SPP理论都适用于分析和解释高激发态下周期性波纹,但Sipe-Drude理论更适合分析更为广泛的周期性波纹结构.同时,波纹延伸方向总是垂直于入射激光偏振方向,其空间周期略小于激光波长,并受到入射激光通量的影响.在激光通量为0.38 J/cm~2时,波纹周期达到最小值.另外,还得到了不同入射角度的波纹周期变化情况,并在不同偏振态下随入射角度增大时波纹周期呈现相反的变化趋势.该研究对于理解飞秒激光造成硅表面形成周期结构及其在加工硅材料领域具有重要参考意义.  相似文献   

10.
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple (N DPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ~150 fs, central wavelength ~800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δt between the cross-polarized individual fs-laser pulses to be varied from ?40 ps to +40 ps with a resolution of ~0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ~790 nm towards ~550 nm is demonstrated for delay changes of less than ~2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant (~760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation.  相似文献   

11.
Frequently observed coherent structures in laser-surface processing are ripples, also denoted as laser-induced periodic surface structures (LIPSS). For polyethylene terephthalate (PET) and polystyrene (PS), LIPSS can be induced by irradiation with linearly polarized ns-pulsed UV laser light. Under an angle of incidence of θ, their lateral period is close to the laser wavelength λ divided by (n eff ? sinθ). Here, n eff is the effective refractive index which is 1.32 and 1.23 for PET and PS, respectively. We describe potential applications of LIPSS for alignment and activation of human cells cultivated on polymer substrates, as well as for formation of separated gold nanowires which show pronounced surface plasmon resonances, e.g., at 775 nm for PET.  相似文献   

12.
Laser-induced periodic surface structures (LIPSSs) were observed on the sidewalls of 300-μm-diameter holes trepanned on cemented tungsten carbide using femtosecond laser pulses at a wavelength of 800 nm. For a circularly polarized beam, LIPSSs were formed at a period of 300 nm and oriented perpendicularly to the plane of incidence on the sidewalls. For a linearly polarized beam, LIPSS formation was dependent on the relative angle α between the polarization direction and the plane of incidence. For relative angles α from 0° to 70° and from 110° to 180°, LIPSS spacing was 300 nm. However, there were two types of LIPSSs coexisting from 70° to 110°. One had a spacing of 120 nm and the other had a spacing that varied from 500 to 760 nm. It was found that the orientation angle of LIPSSs measured between the LIPSS orientation and the plane of incidence had a nonlinear dependence on α. To understand this dependence, a model was proposed in which LIPSSs are assumed to align perpendicularly to the direction of the absorbed electric field lying in the tangent plane of the sidewall of a drilled hole. The calculated results from this model showed good agreement with the experimental results.  相似文献   

13.
We present periodic ripples and arrays of protrusions formed on the surface of silicon after irradiation by low-fluence linearly polarized femtosecond laser pulses. Laser-induced periodic surface structures (LIPSS) are observed for irradiation at center wavelengths of 800, ∼ 1300, and ∼ 2100 nm, with the structure periods somewhat less than the incident wavelengths in air. Additionally, we observe structures with spatial periods substantially less than the incident laser wavelengths. These sub-wavelength periodic structures form only when the photon energy is less than the silicon bandgap energy. We discuss a number of factors which may contribute to the generation of this surface morphology.  相似文献   

14.
We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6–17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.  相似文献   

15.
The self-organized formation of ripples in the direction parallel to the groove during the femtosecond laser machining of microgrooves on aluminum nitride ceramic at laser fluences much higher than the single-pulse ablation threshold is reported. These parallel ripples are notably different from the commonly observed polarization-perpendicular ripples and are produced in grooves having an appropriate width and depth, irrespective of laser polarization. From subsequent experiments with narrow and wide groove widths, it could be considered that the groove walls play an important role in the formation of these parallel ripples, possibly by confining the laser-induced plasma.  相似文献   

16.
In this work, we report the progressive formation of first nanoparticles, next fine ripples, and eventually coarse ripples during the irradiation of single-crystal 6H-SiC surfaces with increasing number of femtosecond laser pulses (λ = 515 nm, τ = 250 fs, repetition rate = 100 kHz). At laser fluences greater than the single-pulse ablation threshold, nanoparticles were produced on the surface by the first few pulses over which fine ripple patterns overlapped at increased pulse numbers. As the pulse number was further increased over ten, the surface was gradually transformed into a coarse ripple–covered one. At laser fluence below the threshold, however, only fine ripples were formed nonuniformly.  相似文献   

17.
Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm−2. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm−2.  相似文献   

18.
Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.  相似文献   

19.
An 880-nm Ti:sapphire laser is used to induce ripple structures on silicon substrates. Single-oriented ripples, twice-overlapped/interlaced single-oriented ripples and single/double-oriented ripples with lattice structures have been obtained at five scan modes. The ripples may be formed by an intensity modulation which arises from the interference of the incident laser and the surface plasmon polaritons excited by the scattered wave of laser. The lattice structures are believed to be formed by intersecting truncation of two mutually perpendicular ripples. All the ripples are oriented in the direction perpendicular to the laser polarization vector and with a period smaller than the laser wavelength.  相似文献   

20.
Ripple formation in consequence of ultrashort laser pulse irradiation of materials is a well-known phenomenon. We have investigated the formation of ripples in various metals, i.e. steel, tungsten carbide hard metal, as well as in superhard ta-C films, where we used femtosecond laser pulses of 775 nm and 387 nm mean wavelength and 150 fs pulse duration. The aim was to investigate how the ripple parameters depend on irradiation parameters, and if such ripples have a potentiality for applications. In the paper, we will show that on smooth surfaces the ripple orientation is perpendicular to the electric field vector of the linearly polarized laser beam, as is well-known. Moreover, it will be shown that the ripple period decreases with decreasing laser wavelength and/or increasing angle of incidence of the laser beam on the substrate. By using optimum parameters large areas of the materials and films can be rippled swiftly, which would be important for applications. For instance, the improvement of frictional and wear behavior of tribologically stressed surfaces by ripples was investigated on ta-C coated steel surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号