首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafast fluorescence resonance energy transfer (FRET) in a catanionic [sodium dodecyl sulfate (SDS)-dodecyltrimethyl ammonium bromide (DTAB)] vesicle is studied by femtosecond up-conversion. The vesicles (diameter ~400 nm for SDS-rich and ~250 nm for DTAB-rich vesicles) are much larger than the SDS and DTAB micelles (diameter ~4 nm). In both micelle and vesicles, FRET occurs in multiple time scales and the time scales of FRET correspond to a donor-acceptor distance varying between 12 and 36 A?.  相似文献   

2.
The structure and dynamics of a catanionic vesicle are studied by means of femtosecond up‐conversion and dynamic light scattering (DLS). The catanionic vesicle is composed of dodecyl‐trimethyl‐ammonium bromide (DTAB) and sodium dodecyl sulphate (SDS). The DLS data suggest that 90 % of the vesicles have a diameter of about 400 nm, whereas the diameter of the other 10 % is about 50 nm. The dynamics in the catanionic vesicle are compared with those in pure SDS and DTAB micelles. We also study the dynamics in different regions of the micelle/vesicle by varying the excitation wavelength (λex) from 375 to 435 nm. The catanionic vesicle is found to be more heterogeneous than the SDS or DTAB micelles, and hence, the λex‐dependent variation of the solvation dynamics is more prominent in the first case. The solvation dynamics in the vesicle and the micelles display an ultraslow component (2 and 300 ps, respectively), which arises from the quasibound, confined water inside the micelle, and an ultrafast component (<0.3 ps), which is due to quasifree water at the surface/exposed region. With an increase in λex, the solvation dynamics become faster. This is manifested in a decrease in the total dynamic solvent shift and an increase in the contribution of the ultrafast component (<0.3 ps). At a long λex (435 nm), the surface (exposed region) of a micelle/vesicle is probed, where the solvation dynamics of the water molecules are faster than those in a buried location of the vesicle and the micelles. The time constant of anisotropy decay becomes longer with increasing λex, in both the catanionic vesicle and the ordinary micelles (SDS and DTAB). The slow rotational dynamics (anisotropy decay) in the polar region (at long λex) may be due to the presence of ionic head groups and counter ions.  相似文献   

3.
Rich phase behavior was observed in salt-free cationic and anionic (catanionic) mixtures of a double-tailed surfactant, di(2-ethylhexyl)phosphoric acid (abbreviated as DEHPA), and tetradecyldimethylamine oxide (C(14)DMAO) in water. At a fixed C(14)DMAO concentration, phase transition from L(1) phase to L(α) phase occurs with increasing amounts of DEHPA. Moreover, in the L(α) phase, with the increase in DEHPA concentration, a gradual transition process from vesicle phase (L(αv)) to stacked lamellar phase (L(αl)) was determined by cryo- and FF-TEM observations combining with (2)H NMR measurements. The rheological data show that the viscosity increases with DEHPA amounts for L(αv) phase samples because of the increase in vesicle density. At a certain molar ratio of DEHPA to C(14)DMAO, i.e., 80:250, the samples are with the highest viscoelasticity, indicating the existence of densely packed vesicles. While for L(αl) phase samples, with increasing DEHPA amount, a decrease of bilayer curvature was induced, leading to a decrease of viscosity obviously. Compared with general catanionic surfactant mxitures, in addition to the electrostatic interaction of ion pairs, the transition of the microstructures is also ascribed to the formation of the hydrogen bonding (-N(+)-O-H···O-N-) between C(14)DMAO molecules and protonated C(14)DMAOH(+), which induces the growth of aggregates and the decrease of aggregate curvatures.  相似文献   

4.
A transition from micelles to vesicles is reported when salts are added to a catanionic micellar solution composed of sodium dodecylcarboxylate (SL) and dodecyltrimethylammonium bromide (DTAB), with an excess of SL. The counterion binding and increase in aggregate size was monitored by mass spectrometry, rheology and dynamic light scattering measurements, whereas the vesicles were characterized by freeze-fracture and cryo-transmission microscopy experiments. The effect of counterions on the formation of vesicles was studied and compared to a previously studied catanionic system with a sulfate head group, SDS/DTAB. As in the latter case, no anion specificity was found, while large differences in the hydrodynamic radii of the formed objects were observed, when the cation of the added salt was varied. A classification of the cations could be made according to their ability to increase the measured hydrodynamic radii. It is observed that, if the sulfate headgroup of the anionic surfactant is replaced by a carboxylic group, the order of the ions is reversed, i.e. it follows the reversed Hofmeister series. Different morphologies are observed as the ionic strength of the system is increased. The aggregates are analogous to those found in the SDS/DTAB system.  相似文献   

5.
We present the phase behavior and thermodynamics of the catanionic mixture of the gemini surfactant hexanediyl-alpha,omega-bis(dodecyldimethylammonium bromide), designated here as 12-6-12Br(2), and sodium dodecyl sulfate (SDS) over the full range of composition, at the water-rich corner. Visual and turbidity measurements of the mixtures provide some basic macroscopic information on phase behavior. The structure of the aggregates formed spontaneously in the mixtures has been observed with TEM. As the molar fraction of SDS, X(SDS), is increased, at constant total surfactant concentration, the aggregation morphologies change gradually from gemini-rich micelles, through multiphase regions containing a precipitate (catanionic surfactant) and a vesicle region, to SDS-rich micelles. From isothermal titration calorimetry measurements, the phase boundaries and corresponding enthalpy changes for phase transitions have been obtained. The formation of the different microstructures, in particular, the spontaneously formed vesicles in the SDS-rich side, is discussed on the basis of geometric and electrostatic effects occurring in the SDS-gemini mixture.  相似文献   

6.
The concentration vs composition diagram of aggregate formation of the dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) mixture in aqueous solution at rather dilute region was constructed by analyzing the surface tension, turbidity, and electrical conductivity data and inspected by cryo-TEM images and dynamic light scattering data. Although the aqueous solution of DTAB forms only micelles, the transition from monomer to small aggregates and then to vesicle was found at 0.1 < X2 相似文献   

7.
Vesicles form spontaneously in a aqueous mixture of sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT) and lauryl sulfonate betaine (LSB). Different from catanionic vesicles, the formation or disaggregation of such zwitterionic/anionic vesicles may be easily controlled by adjusting the relative amount of LSB and salinity. The participation of LSB reduces the polydispersity of the vesicles and even results in the formation of monodispersed vesicles at a certain salinity. But as LSB exceeds a certain proportion, vesicles cannot form at any concentration and salinity, making convenient the study of the structural transitions. We applied pyrene as a fluorescence probe and monitored the transition among the monomer, micelle, and vesicle through the variation of I(1)/I(3), accompanied by conductivity and turbidity measurements. In LSB solution and LSB-rich mixture, an abrupt change of the ratio of I(1)/I(3) was found in the transition from monomer to micelle with increasing concentration, as well as in the transition from micelle to vesicle with increasing salinity, which shows that a difference of the polarity of the microenvironment between the micelle and the vesicle bilayer resulted from the composition change. But in AOT solution and AOT-rich mixture, only a gradual change in the transition is observed due to the existence of intermediate structures, which have different microenvironments from micelles and vesicles. So the formation of vesicle experiences a process of monomer to premicelle to micelle to bilayer segment with increasing concentration by combining the conductivity method. The ratio of I(1)/I(3) is independent of the vesicle size once formed.  相似文献   

8.
A novel catanionic surfactants vesicle system composed of octyltriethylammonium bromide/ sodium dodecyl benzene sulfonate (C8NE3Br/SDBS) has been developed as pseudostationary phase (PSP) in EKC. The C8NE3Br/SDBS system possesses a large vesicle phase region and none of agglomeration phenomena appeared while mixing cationic and anionic surfactants at any molar ratio. Electrophoretic and chromatographic parameters including elution window, hydrophobic selectivity, polar group selectivity, and shape selectivity were characterized using the vesicle at molar ratio of C8NE3Br to SDBS of 3:7 as PSP. Compared with SDS micelles, the vesicle PSP possessed a wider elution window and a better selectivity. The retention behavior and selectivity differences between the novel vesicle and SDS micelles were evaluated through linear solvation energy relationship (LSER) analysis. Though the cohesiveness and the hydrogen bond acidity have greatest influences on the solutes retention and selectivity in both the vesicle and SDS micelle, the vesicle PSP demonstrated a higher hydrophobicity and a lower hydrogen bonding donating capability owing to compact bilayer structure of vesicle. Additionally, the vesicle system had a stronger hydrogen bond accepting capability than SDS micelle. Consequently, according to LSER analysis, the bigger coefficients for v, b, and a revealed the vesicle PSP had a better separation selectivity than conventional SDS micelle.  相似文献   

9.
Mixed micelles of the phospholipid 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) with sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium bromide (DTAB) in aqueous solutions and the effects of interactions between the components were studied by fluorescence and NMR measurements. The regular solution theory (RST) was applied to analyze the experimental critical micelle concentration values determined from the fluorescence spectra of pyrene in the mixed micelles. Negative values for the interaction parameter (beta12) were obtained for both DHPC + SDS and DHPC + DTAB mixtures, with the value being more negative in the former case. The negative beta12 values for the two systems imply that the interaction between the phospholipid and the two ionic surfactants is attractive in nature, being more intense in the case of DHPC + SDS. The interaction parameter, beta12, varies with composition of the mixtures indicating changes in packing. The proton NMR shifts are quite different for the two systems and also vary with composition. An interpretation of these experimentally determined chemical shifts in terms of the degree of compactness attributed to electrostatic and steric interactions in the mixed micelle supports the conclusions derived from the fluorescence cmc experiments.  相似文献   

10.
In this paper, it is reported that positively charged Mg3Al layered double hydroxide (LDH) nanoparticles can induce the spontaneous formation of vesicles in micelle solution of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) with a mass ratio of 8:2. The formation of vesicles was demonstrated by negative-staining transmission electron microscopy observations. The size of the vesicles increased with the increase in the concentration of Mg3Al-LDH nanoparticles. A composite of LDH nanoparticles encapsulated in vesicles was formed. A possible mechanism of LDH-induced vesicle formation was suggested. The positively charged LDH surface attracts negatively charged micelles or free amphiphilic molecules, which facilitates their aggregation into bilayer patches. These bilayer patches connect to each other and finally close to form vesicles. It was also found that an adsorbed compound layer of SDS and DTAB micelles or molecules on the LDHs surface played a key role in vesicle formation.  相似文献   

11.
Sodium dodecylsulfate and cetyltrimethylammonium bromide mixtures are important catanionic systems, as they have an inherent tendency to form vesicle structures. Despite extensive studies on the phase behavior and microstructures, there is dearth of basic information on the aggregation and adsorption behavior of this mixed system. In this work the critical micelle concentration, surface tension reduction effectiveness, surface excess, mixed micelle and monolayer compositions, activity coefficients, interaction parameters, counterion binding and Gibbs energy terms of this mixed system are determined by measuring its surface tension and conductance as a function of composition. The dependence of mixed micelle composition on surfactant concentration has been successfully demonstrated.  相似文献   

12.
A micelle-to-vesicle transition (MVT) induced by the addition of a series of apolar hydrocarbons (n-butylbenzene, n-hexane, n-octane, and n-dodecane) to the catanionic surfactant system n-dodecyltriethylammonium bromide/sodium n-dodecylsulfate (DTEAB/SDS) has been investigated for the first time by means of rheology and turbidity measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Interestingly, a MVT can take place within certain micellar regions, which are dependent on the structure and chain length of the hydrocarbon. However, these hydrocarbons are unable to induce a MVT in another catanionic surfactant system, namely, n-dodecyltriethylammonium bromide/sodium n-dodecylsulfonate (DTEAB/SDSO(3)), in which the molecular interactions are weaker than in the DTEAB/SDS system. On the other hand, polar additives, such as n-octanol and n-octylamine, exhibit much higher efficiency and activity in inducing MVT than hydrocarbons in both DETAB/SDS and DTEAB/SDSO(3). Moreover, DLS, TEM, and time-resolved fluorescence quenching (TRFQ) results demonstrate that the ratio of vesicles to micelles in the system can be actively controlled by addition of polar additives. Possible mechanisms for the above phenomena are presented, and the potential application of controllable micelle/vesicle systems in the synthesis of tailored bimodal mesoporous materials is discussed.  相似文献   

13.
Conventional cationic and anionic (catanionic) surfactant mixtures tend to form precipitates at the mixing molar ratio of the cationic and anionic surfactant of 1:1 because of the excess salt formed by their counterions. By using OH- and H+ as the counterions, however, excess salt can be eliminated, and salt-free catanionic systems can be obtained. Here, we report the detailed phase behavior and rheological properties of salt-free catanionic surfactant system of tetradecyltrimethylammonium hydroxide (TTAOH)/lauric acid (LA)/H2O. With the variation of mixing molar ratio of LA to TTAOH (rho=nLA/nTTAOH), the system exhibits much richer phase behavior induced by growth and transition of aggregates. Correspondingly, the rheological property of the system changes significantly. Take the series of samples with fixed total surfactant concentration (cT) to be 15 mg.mL(-1), the system only forms a low viscous L 1 phase with a Newton fluid character at the TTAOH-rich side. With increasing rho, first a shear-thickening L1 phase region is observed at 0.70or=1.05, and finally, at rho>or=1.13, the excess LA will separate from the bulk solution and form a white top layer. Investigations were also carried out by varying c T at fixed rho and by changing temperature, respectively. It was found micelle growth would be greatly suppressed at higher temperatures. However, the vesicle phases showed a considerable resistance against temperature rise.  相似文献   

14.
A new type of intermediate structure was found in the salt-induced micelle-to-vesicle transition in a catanionic system composed of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) in aqueous solution with an excess of anionic surfactant. The appearance of symmetrically shaped hollow structures, which we named blastulae vesicles, is presented.  相似文献   

15.
Sodium dodecyl sulfate (SDS)/dodecyl triethyl ammonium bromide (DEAB) mixed micelles (with SDS in excess) can transform to vesicles only when the temperature is higher than a critical value. In this study, we report for the first time that oligonucleotide can decrease the critical temperature to a much lower value and, hence, induce micelle‐to‐vesicle transition. The facilitation efficiency of oligonucleotide on vesicle formation is closely dependent on its size and base composition. Moreover, the SDS/DEAB/oligonucleotide vesicles are negatively charged and the hydrophobic interaction between oligonucleotide and SDS/DEAB mixed micelles is the driving force. As, so far, the report about the facilitation effect of oligonucleotide and DNA on vesicle formation is very limited, this study may provide some helpful information for the application of DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7491–7504, 2008  相似文献   

16.
The effect of salt concentration on intermicellar interactions and aggregate structures of anionic and cationic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) were investigated with conductometry, surface tension, zeta potential, cyclic voltammetry measurements and by determining the surfactant NMR self-diffusion coefficients. The critical aggregate concentration (CAC), surface excess (Γ(max)), and mean molecular surface area (A(min)) were determined from plots of the surface tension (γ) as a function of the log of total surfactant concentration. The electrochemical behavior of cationic-anionic (catanionic) mixed surfactant and self-assembled surfactant monomers at Pt wire electrode were studied by cyclic voltammetry (CV). A variation in the peak current versus the total concentration of surfactant allow us to evaluate the CAC and related parameters from regular solution theory along with the diffusion coefficient of the electroactive species. It was observed that, for both the planar air/aqueous interface and micellar systems, the nonideality decreased as the amount of electrolyte in the aqueous medium was increased. Finally, we investigated the variations of electrostatic, transfer and steric free energy in phase transition between mixed micelle and vesicle in the presence of electrolyte using the presented model by our groups.  相似文献   

17.
The gelation of two spontaneously formed charged catanionic vesicles by four water soluble polymers was systematically studied by tube inversion method and rheology. Eight phase maps were successfully documented for the catanionic vesicle–polymer mixtures. The experimental results, as represented by the relaxation time and the storage modulus at 1 Hz, revealed that the catanionic vesicle–polymer interactions at play were of electrostatic and hydrophobic origin. Firstly, no association between charged catanionic vesicles and the polymer without charge/hydrophobic modification was observed due to lack of both electrostatic and hydrophobic effects. Secondly, hydrophobic interactions accounted for the association between the hydrophobically modified polymer without charge and charged catanionic vesicles with hydrophobic grafts of the polymer inserting in the catanionic vesicle bilayer. Thirdly, the positively charged polymer without hydrophobic modification could interact with negatively charged catanionic vesicles through electrostatic force on one hand but could not interact with positively charged catanionic vesicles on the other hand. Finally, the positively charged polymer with hydrophobic modification could interact both electrostatically and hydrophobically with negatively charged catanionic vesicles, resulting in the formation of strong gels. The hydrophobic interaction might even overcome the unfavorable electrostatic interaction between the positively charged vesicles and the polymer with positive charge/hydrophobic modification.  相似文献   

18.
The conductances of sodium perfluorooctanoate (SPFO), sodium dodecylsulphate (SDS), dodecyltrimethylammonium bromide (DTAB), and tetradecyltrimethylammonium bromide (TTAB) in 18-crown-6 ether + water (CR+W), p-cyclodextrin + water (CY+W), and 1,10-phenanthroIine + water (Phen+W) mixtures with fixed 4 mM of each additive were determined over the temperature range of 5-55 °C. The conductivity plots for all the surfactants showed single break from which the critical micellization concentration (cmc) and degree of micelle ionization (x) were computed. From the pre and the post micellar slopes of the conductivity curves, the equivalent conductivities of the monomeric (Aass) and the micellar states (Amjc), respectively, were calculated and discussed with respect to the surfactant-additive complexation. It was observed that the micelle formation of all the ionic surfactants irrespective of the nature of their head groups were delayed in CYC+W in comparison to that in CR+W and Phen+W systems over the temperature range studied. The micelle formation of SPFO and SDS in CR+W and Phen+W systems showed stabilization of the respective micelles due to the adsorption of Na+-CR and Na+-Phen complexes at the micelle solution interface in comparison to that of DTAB and TTAB.  相似文献   

19.
The aqueous sodium undecenoate (SUD) –dodecyltrimethylammonium bromide (DTAB) catanionic system was studied at low concentration. The system did not precipitate, even at a 1:1 SUD:DTAB proportion, but showed the formation of a coacervate in a range of surfactant mixture compositions. Micelles have a preferential composition of 0.37 mole fraction of SUD. This behavior is attributed to the presence of the double bond at the distal extreme of the SUD molecule, which can form hydrogen bonds with water. Consequently, the –CH=CH2 group is situated at the interface between the hydrocarbon micelle core and water, reducing the interfacial free energy. Structural computations demonstrate that the mentioned SUD proportion produces complete coverage of the micelle surface by the double bonds.  相似文献   

20.
The pyrene fluorescence measurements have been carried out for the micelle formation of sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and dimethylene bis(dodecyldimethylammonium bromide) (12-2-12) in the presence of fixed different amounts of various generations of poly(amidoamine) (PAMAM). The critical micelle concentration (cmc) of SDS decreases with an increase in the fixed amount of PAMAM, suggesting the facilitation of micellization due to the participation of SDS-PAMAM complex in the micelle formation. This behavior has not been observed for DTAB/12-2-12 in the presence of various generations of PAMAM. The results indicate that SDS always has stronger interactions with all the generations of PAMAM in comparison to those of DTAB and 12-2-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号