首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Micron-sized monodispersed cross-linked polymer particles having one hollow in the inside were produced by seeded polymerization for the dispersion of (toluene/divinylbenzene)-swollen PS particles prepared utilizing the dynamic swelling method which the authors proposed. In order to control the hollow size, the weight ratio of toluene/PS was changed in the range of 520. The hollow size increased with an increase in the weight ratio. Even if benzene and xylene were used in place of toluene, similar hollow particles were produced, though the hollow size was affected by their solubility in water.Part CLIII of the series Studies on Suspension and Emulsion  相似文献   

2.
Hollow particles with interconnected cavities have been prepared by a simple modified suspension polymerization of acrylate monomers in the incorporation of a phase inversion process and polymerizable emulsifier. The morphology of particles has been characterized by scanning electron micrographs (SEMs). Based on observations made using an optical microscope equipped with a digital camera and SEM images of particles obtained under different conditions, the formation mechanisms for multiporous hollow particles are discussed.  相似文献   

3.
Production of hollow polymer particles by suspension polymerization   总被引:4,自引:0,他引:4  
 Polymer particles having single hollow in the inside were successfully prepared by suspension polymerization for divinylbenzene/ toluene droplets dissolving polystyrene (PS) in an aqueous solution of poly(vinyl alcohol). Such a hollow polymer particle was not obtained without PS. The hollow structure was affected by the molecular weight and the concentration of PS. Received: 3 December 1997 Accepted: 27 March 1998  相似文献   

4.
Hollow poly(styrene–divinylbenzene) (P(S-DVB)) microspheres were fabricated via template-based method including synthesis of silica particles by sol-gel method, preparation of silica/P(S-DVB) particles by dispersion polymerization and chemical etching of silica cores by NaOH solution. TEM, FTIR and TG analyses confirmed that the hollow P(S-DVB) microspheres were successfully obtained. The morphology of hollow P(S-DVB) microspheres could be controlled by adjusting the amounts of DVB, AIBN and VTES, and the round-ball-like hollow P(S-DVB) microspheres were fabricated when the amount of DVB, AIBN and VTES was 30.0?wt%, 5.0?wt% and 30.0?vol% respectively. Both the size of silica particles and amount of monomers were regarded as the two key factors to control the particle size of the round-ball-like hollow P(S-DVB) microspheres.  相似文献   

5.
This review focusses on processes in which emulsion polymerizations are carried out in stages so that previously formed particles are either overcoated in subsequent polymerization stages or engulf the second and later stage polymers. These products are often called “core-shell” particles. Basically, the most stable state of the final system is the one with the lowest net interfacial energy. In the case of a two-stage emulsion polymerization there can be three interfacial tensions to consider. Several mutually consistent, effective thermodynamic treatments have been published. At present, they serve primarily to predict when the morphology of multi-stage polymerization products may not be a simple reflection of the synthesis sequences. It is possible, and frequently desirable, however to produce particle structures that appear at first glance to be thermodynamically forbidden. This is achieved either by changing the surface characteristics of a polymer from those of the bulk material or by employing kinetic factors to anchor energetically unprofitable morphologies. This paper summarizes methods of both types that have been reported to control the texture of structured latex particles in order to produce designed morphologies.  相似文献   

6.
A novel spongelike polymer material has been fabricated by γ-ray induced polymerization of methylmethacrylate (MMA) in an emulsion containing cross-linked sulfonated polystyrene (CSP) particles. Scanning electron microscopy (SEM) images reveal that the spongelike structure is made up of interlinked nanosized PMMA particles with micrometer-sized CSP-PMMA particles embedded inside. The nitrogen adsorption isotherm discloses that the spongelike material has a high specific surface area of 29 m(2)/g and a narrow pore size distribution of 60-120 nm. The formation mechanism is discussed in this paper, which indicates that the key steps to form the spongelike material include a Pickering emulsion stabilized by the CSP particles, followed by the swelling process of MMA into these particles. This approach offers a more convenient alternative to prepare polymeric spongelike material without any etching procedure.  相似文献   

7.
8.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

9.
A novel surface modification method for titania nanoparticles is provided via the surface‐initiated photocatalytic polymerization with the aid of acrylic acid (AA) or sodium styrene sulfonate (NaSS). The properties of modified titania nanoparticles are investigated with aqueous electrophoresis measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Then the modified titania is used as Pickering stabilizer for further polymerization and the morphology of the resulted polymer microspheres is characterized by TEM and field‐emission scanning electron microscopy. It is proven that the addition of AA or NaSS for the surface‐initiated polymerization can obviously affect the structure and morphology of the final polymer composite microspheres. The formation mechanism of several kinds of polymer particles is also proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A general route, involving swelling–evaporation processes, is proposed for the generation of polymer hollow nanospheres derived from polymer nanoparticles for the first time. Different swelling reagents, such as ethanol, o‐toluidine, toluene, and carbon tetrachloride, have been used to study their effect on the morphology of the resultant polymer hollow structures. The evaporation conditions, such as the temperature and pressure, can be used to tune the size and shell thickness of the polymer hollow structures. The chemical structures of the polymer have been characterized with X‐ray diffraction, Fourier transform infrared, and ultraviolet–visible spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2638–2645, 2007  相似文献   

11.
Micron-sized, monodisperse polystyrene (PS)/poly( n-butyl methacrylate) (PBMA) composite particles, in which PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles (PS/BMA=1/150, w/w) using various concentrations of benzoyl peroxide as initiator in the absence/presence of sodium nitrite (NaNO 2) as a water-soluble inhibitor. The percentages of the composite particles having double, triple and over PS domains, which were thermodynamically unstable morphologies, increased with a rapid increase of viscosity within the polymerizing particle.  相似文献   

12.
Polyacrylamide microparticles were directly produced by radiation-induced dispersion polymerization in aqueous alcohol media using poly(N-vinylpyrrolidone) as a steric stabilizer at room temperature. The hydrodynamic diameter of a polymer particle and its distribution were measured on a dynamic laser light-scattering spectrometer. This method takes advantages of the specialties of radiation induction, and highly uniform polymer microspheres were obtained with high conversion. The number of the particle produced in the early stage of the polymerization was found to be constant during the remainder of the polymerization. The effects of various polymerization parameters, such as absorbed dose rate, monomer concentration, stabilizer content, medium polarity, and polymerization temperature on the particle size and size distribution were systematically investigated.  相似文献   

13.
Polymer composites with inorganic fillers of different nature, concentration, particle size and shape were studied by optical spectroscopy (UV, visible, and IR ranges), optical and electron microscopy, and dynamic light scattering. An experiment to determine the size of the filler particles in aqueous suspension in the polymer matrix of a composite and directly in powders was conducted. It was shown that with increasing concentration aggregation of particles on drying an aqueous slurry occurs to a greater extent than for the filler in the polymer composite. It was demonstrated by examples that the optical spectroscopy can be successfully used for the analysis of sub-micron and micron sized filler particles in a polymer matrix or suspension.  相似文献   

14.
Latex emulsions depend strongly on the polymer composition, and particle size distribution, which in turn, is a function of the preparation of the latex and on the formulation and composition variables. This study reports measurements of particle size and particle size distribution of latex emulsions as function of the reaction time and the type and concentration of emulsifier by using the multiwavelength spectroscopy technique. Results show changes in the particle size of latex emulsions with the reaction time, obtaining larger particles and broader distributions with increasing of Tween 80 ratio. The steric stabilization provides the sole nonionic emulsifier is not enough to protect the polymer particle, causing the flocculation among the interactive particles, resulting in unstable latex. However, latex emulsions prepared with Tween 80 ratio <70 wt.% can stabilize efficiently the nucleated particles, probably due to the effects provided by both, the electrostatic and steric stabilization mechanisms. The same effect is shown in the curves of conversion (%) as a function of reaction time, resulting in slower polymerization rate for Tween 80 ratio >70 wt.%. On the other hand, smaller polymer particles, in all range of emulsifier mixture, have been obtained to higher emulsifier concentration.  相似文献   

15.
Uniform and stable core-shell microspheres composed of a poly(methyl methacrylate) (PMMA) core and a thin metallic shell of nickel-phosphorus, cobalt-phosphorus, or mixed metal alloys (CoNiP, NiFeP, CoFeP) were prepared by dispersion polymerization of methyl methacrylate followed by electroless plating. The presence of the metallic shell around the particles was confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy. Transmission electron microscopy images of the cross-section of individual particles show that the thickness of the metal/alloy can be precisely tuned by adjusting the immersion time of the microspheres in the electroless bath. Depending on the deposited metallic material, various magnetic properties, from paramagnetic to ferromagnetic, are achieved. Finally, uniform hollow metallic spheres composed of nickel, cobalt, or nickel-cobalt alloy are obtained by dissolving the polymer core.  相似文献   

16.
Self-organization of cationic polymer particles through hydrophobic interaction on polymer films in aqueous system and characteristic properties of the resulting particle monolayers were investigated. Cationic polymer particles bearing quaternary ammonium groups on their surfaces effectively self-organized on polymer films. With an increase of the particle surface charge density, the surface coverage and average aggregate size (N a) decreased. The surface coverage control was accomplished by tuning the ionic strength of the media. The wettability of polymer films for water was imparted by the formation of particle monolayers on them. Annealing of the particle monolayers resulted in the increase of the adhesive strength, while the wettability for water was lost. Further improvements of both wettability and adhesive strength of particle monolayers were achieved by the immobilization of silica colloids on the particle monolayers. This method would be effective for the hydrophilization of polymer films.  相似文献   

17.
The pore size distribution (PSD) and pore connectivity (PC) within porous polymer particles are probed by combining NMR cryoporometry and NMR relaxometry (spin-spin relaxation). With water as a probe molecule, the constant K in the so-called Gibbs-Thompson equation and the surface relaxivity (rho2) were determined to be K = (420 +/- 50) KA and rho2 = (0.44 +/- 0.01) x 10(-6) ms(-1), respectively. Also, the thickness of the interface layer was estimated to be of the order of one monolayer of water molecules. A detailed analysis of the complete set of NMR data enabled the morphology or pore structure to be probed, and is thoroughly discussed in the text.  相似文献   

18.
4 μm-sized monodispersed cross-linked polymer particles having hollow structure were produced as follows. First, 1.7 μm-sized monodispersed polystyrene (PS) seed particles produced by dispersion polymerization were dispersed in ethanol/water (7/3, w/w) solution in which divinylbenzene (DVB), benzoyl peroxide (BPO), poly(vinyl alcohol), and toluene was dissolved. The PS seed particles were swollen with DVB, toluene and BPO maintaining high monodispersity throughout the dynamic swelling process where water was slowly added continuously. And then, the seeded polymerization of the (toluene/DVB)-swollen PS particles was carried out.  相似文献   

19.
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.  相似文献   

20.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号