首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5–4 μm range TEC mercury–cadmium–telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm?1, a 1σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.  相似文献   

2.
A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2f) was used to determine the absorption magnitude. The 1f-normalized, WMS-2f signal (WMS-2f/1f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1f-normalized WMS-2f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.  相似文献   

3.
A tunable diode laser absorption spectroscopy (TDLAS) device fiber coupled to a pair of 12.5 in. telescopes was used to study atmospheric propagation for open path lengths of 100–1,000 meters. More than 50 rotational lines in the molecular oxygen A-band O2 $ {\text{X}}{^{ 3}}{ \sum_{\text{g}}^{ - }} \,{\text{to}}\, {\text{b}}{^{ 1}}{ \sum_{\text{g}}^{ + }} $ transition near 760 nm were observed. Temperatures were determined from the Boltzmann rotational distribution to within 1.3 % (less than ±2 K). Oxygen concentration was obtained from the integrated spectral area of the absorption features to within 1.6 % (less than ±0.04 × 1018 molecules/cm3). Pressure was determined independently from the pressure-broadened Voigt lineshapes to within 10 %. A fourier transform interferometer (FTIR) was also used to observe the absorption spectra at 1 cm?1 resolution. The TDLAS approach achieves a minimum observable absorbance of 0.2 %, whereas the FTIR instrument is almost 20 times less sensitive. Applications include atmospheric characterization for high energy laser propagation and validation of monocular passive raging.  相似文献   

4.
Silicon (Si) wettability is one of the important parameters in the development of Si-based biosensing and lab-on-chip devices. We report on UV laser induced hydrophobicity of Si (001) wafers immersed in methanol during the irradiation with an ArF excimer laser. The irradiation with 800 pulses of the laser operating at 65 mJ/cm2 allowed to significantly increase the hydrophobicity of investigated samples as characterized by the static contact angle change from 77° to 103°. Owing to the irradiation with relatively low laser fluence, no measurable change in surface morphology of the irradiated samples has been observed with atomic force microscopy measurements. The nature of the hydrophobic surface of investigated samples is consistent with X-ray photoelectron spectroscopy analysis that indicates formation of Si–O–CH3 bonds on the surface of the laser-irradiated material.  相似文献   

5.
The development of a continuous wave (CW), thermoelectrically cooled (TEC), distributed feedback (DFB) laser diode based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) based on a 2f wavelength modulation (WM) detection technique. TDLAS was performed with a 100 m optical path length astigmatic Herriott cell. For an interference free C2H6 absorption line located at 2976.8 cm−1 a 1σ minimum detection limit of 240 pptv (part per trillion by volume) with a 1 second lock-in amplifier time constant was achieved. In addition, reliable and long-term sensor performance was obtained when operating the sensor in an absorption line locked mode.  相似文献   

6.
We report about the contribution of thermally grown SiOx overlayer on the SiOx/Si interface (with oxidation states Sin+, where n = 1, 2, 3, 4) to the optical losses of a resonant spectroscopic cavity. The experiments on Si oxide thin films were performed in evanescent wave for Si samples in contact with a total internal reflection surface of a BK7 prism. The evanescent field can be exploited to investigate properties and processes such as the absorption of thin film or solid/air interface reactions. The results show that the oxide overlayer thickness grows with the thermal exposure time and is limited after more than 7 h of treatment. Transmission electron microscopy has been used for the native oxide thickness measurement and angle-resolved X-ray photoelectron spectroscopy used to determine the thermal oxide thickness. A change of absorption coefficient Δα in the range 100–200 cm?1 is obtained by evanescent-wave cavity ring-down spectroscopy (EW-CRDS) for thermal silicon oxide overlayer, in agreement with the general trend from literature. The evaluation from the EW-CRDS experiments presents the used setup as a competitive method for measuring the absorption properties of thin overlayer.  相似文献   

7.
The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core–hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure (P total = 20–30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.  相似文献   

8.
An optical sensor based on differential absorption spectroscopy for real-time monitoring of industrial nitric oxide (NO) gas emission is described. The influence of gas absorption interference from sulfur dioxide (SO2) in the environment was considered and a spectral separation technique was developed in order to eliminate this interference effect. The absorption spectrum of SO2 around 226 nm was evaluated by the SO2 concentration obtained using the experimentally recorded absorption spectrum around 300 nm. The absorption spectrum of NO around 226 nm was obtained by subtracting the absorption of SO2 from the integral absorption spectrum of SO2 and NO. The concentration measurements were performed at atmospheric pressure. The technique was found to have a lower detection limit of 0.8 ppm for NO per meter path length (SNR=2) and be immune from the influence from SO2 on the NO measurement. The sensor based on this technique was successfully employed for in situ measurement of SO2 and NO concentrations in the flue gas emitted from an industrial coal-fired boiler.  相似文献   

9.
Simultaneous measurements of carbon monoxide (CO) mole fraction and temperature using tunable diode laser absorption spectroscopy (TDLAS) near 2.3 μm are reported. The measurement method uses ro-vibrational transitions [R(27): v″ = 1 → v′ = 3] and [R(6): v″ = 0 → v′ = 2] in the first overtone band of CO near 2.3 μm (~4,278 cm?1). The measurements were performed in the post flame environment of fuel rich premixed ethylene–air flames with a N2 co-flow, stabilized over a water cooled McKenna burner. Non-uniformity in the temperature and CO mole fraction, along the absorption line of sight, in the mixing layer of the co-flow, was considered during data analysis. The TDLAS based temperature measurements (±80 K) were in good agreement with those obtained using N2 vibrational coherent anti-Stokes Raman scattering (±20 K), and the CO mole fraction measurements were in good agreement with the equilibrium values, for equivalence ratios lower than 1.8. A signal to noise ratio of 45 was achieved at an equivalence ratio of 1 for a CO concentration of 0.8 % at 1,854 K.  相似文献   

10.
CO concentration and gas temperature distribution are diagnosed behind a strong shock wave simulating the Martian atmosphere entry processes by coupling optical emission spectroscopy (OES) and tunable diode laser absorption spectroscopy (TDLAS). The strong shock wave (6.31 ± 0.11 km/s) is established in a shock tube driven by combustion of hydrogen and oxygen. Temperature of the shock-heated gas is inferred through a precise analysis of the high temporal and spatial resolution experimental spectral of CN violet system (B 2 Σ + →X 2 Σ +, Δv = 0 sequence) using OES. A CO absorption line near 2,335.778 nm is utilized for detecting the CO concentration using scanned-wavelength direct absorption mode with 50 kHz repetition rate. Combined with temperature results from OES, CO concentration in the thermal equilibrium region is derived. The current experimental results are complementary for determining an accurate rate coefficient of CO2 dissociation and validation relevant chemical kinetics models in Mars atmosphere entry processes.  相似文献   

11.
A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm?1) and combination υ 1 + υ 3 band (~3,610 cm?1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm?1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm?1, paired with the R(28) line near 3,633.08 cm?1. This combination yields high temperature sensitivity (ΔE” = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600–1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.  相似文献   

12.
We describe a technique of simultaneous detection of 14NO and 15NO by means of Faraday Modulation Spectroscopy (FAMOS) based on a cw distributed feedback quantum cascade laser (QCL) operating near 5.4 μm. FAMOS is a spectroscopic method for selective, sensitive, and time-resolved detection of free radical molecules such as NO, in the mid-infrared spectral region. The selected spectral lines are the Q (1.5) for 15NO located at 1842.76 cm?1 and the P (9.5) for 14NO located at 1842.93 cm?1. The detection limit (1σ) of 6 ppb $/\sqrt{\mathrm{Hz}}$ for 15NO and 62 ppb $/\sqrt{\mathrm{Hz}}$ for 14NO has been achieved. The simultaneous detection was performed using a fast laser frequency switching between the two isotopologues with a time resolution of 2 s. The isotope ratio (δ 15N) has been determined with a precision (1σ) of 0.52‰ at 800-s averaging time for 100 ppm NO-gas with a time resolution of 2 s. δ 15N is determined after NO release from nitrite by chemical reduction with potassium iodine.  相似文献   

13.
Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.  相似文献   

14.
A Pr3+:KLu(WO4)2 crystal with dimension of 30 × 30 × 15 mm3 was grown in the K2W2O7 flux. A slice was cut from the crystal, and the polarized absorption and fluorescence spectra were measured at room temperature. Based on the J-O theory, the oscillator intensity parameters Ω t (t = 2, 4, 6), spontaneous emission probabilities and branch ratios were estimated and good results had been obtained. Furthermore, the crystal has a relatively large emission cross-section in the region of 615–630 nm with the highest value of 14.5 × 10?20 cm2, which indicates that the crystal is good for the application in red emission laser. The emission decay time for 1D2 and 3P0 multiplets was discussed. By adapting the I-H model to fit the emission decay curves, the lifetime for 1D2 at 607 nm and 3P0 at 615 nm are 19.72 μs and 8.95 μs, respectively. Then the corresponding fluorescence quantum efficiencies of the two multiplets reach 83.7 % and 87.9 %, respectively. All the studies illustrate that this crystal is potential in red emission laser application.  相似文献   

15.
TlBa2(Ca3?y Be y )Cu4O12?δ (y = 0, 0.5, 1.0, 1.5, 2) samples are synthesized at normal pressure and the influence of doped Be-atoms on the superconductivity parameters at the microscopic level is investigated by carrying out excess conductivity analyses of conductivity data. The samples have shown tetragonal structure and the unit cell volume decreases with increased Be-doping. The onset temperature of superconductivity [T c(onset)] and zero resistivity critical temperature [T c(R = 0)] decrease with increased Be, however, the magnitude of diamagnetism is enhanced with Be (except for Be-doping of y = 1.0). The apical oxygen mode of the type Tl–OA–Cu(2) and CuO2 planar oxygen mode are softened as observed in FTIR absorption measurements. The FIC analyses of conductivity data have shown an increase in the coherence length along the c-axis and inter-plane coupling. The values of B c0(T), B c1(T), J c(0), τ φ are improved with the doping of Be. These observations suggested that due to the proximity effect there is less suppression in the value of the order parameter of the Cooper pairs from |ψ|2 = 1 value in the CuO2 planes in Be-doped samples that maintains the density of carriers in the conducting CuO2 planes [since the |ψ|2 = n/2] which promotes enhancement in the magnitude of superconductivity.  相似文献   

16.
In this paper, PMMA/ZnO nanocomposites have been prepared by a very simple, facile and versatile chemical approach. The prepared PMMA/ZnO nanocomposites possess no color, high transparency, good thermal stability, UV-shielding capability, luminescence and homogeneity. The chemical process involved solution mixing of ZnO nanoparticles dispersed in DMAc with the Polymethylmethacrylate (PMMA) matrix dissolved in the same solvent. The effect of ZnO content on the physical properties of the PMMA matrix is investigated by X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, UV–Vis absorption and photoluminescence spectroscopy. It was found that pure hexagonal ZnO nanoparticles with an average particle size of 4–8 nm were homogeneously dispersed in the PMMA matrix. A significant improvement in thermal properties was observed with the incorporation of 1.0 wt% ZnO nanoparticles. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurement of room temperature photoluminescence spectra shows intensive near-band edge emission peak at 3.28 eV without any structural defects for a nanocomposite film with a filler content of 1.0 wt%.  相似文献   

17.
Trivalent dysprosium (Dy3+)-doped K–Sr–Al phosphate glasses have been prepared and investigated for their optical and luminescence properties. Judd–Ofelt theory has been used to derive radiative properties for the 4F9/2 level of Dy3+ ions. The luminescence spectrum of 1.0 mol% Dy2O3-doped glass shows intense yellow emission around 572 nm ascribed to 4F9/2 → 6H13/2 transition with 78 % branching ratio and emission cross section of the order of 2.48 × 10?21 cm2. Moreover, the quantum efficiency of the 4F9/2 level has been found to be 76 %. The luminescence decay curves for the yellow emission (4F9/2 → 6H13/2) have been measured and analyzed as a function of Dy3+ ion concentration. The results revealed that Dy3+-doped phosphate glasses could be useful for yellow laser applications.  相似文献   

18.
In this study, anti-reflection (AR) \(\hbox {SiO}_{2}/ \hbox {ZrO}_{2}\) thin films with 3-layers were designed and fabricated by the essential Macleod software and physical vapor deposition, respectively. In order to improve the optical and physical properties of the prepared samples, laser shock peening (LSP) technique was applied. For this purpose, an Argon Fluoride Excimer laser \((\lambda =193 \,\text {nm})\) with 110 and 240 mJ energies and 1 Hz frequency at different pulses was used. The effect of LSP method in improving transmissions and laser damage thresholds of the prepared samples was proved by using UV–Vis–IR spectroscopy in the wavelength range of 400–1200 nm and international standard ISO11254 at 1064 nm. In addition, scanning electron microscopy was used to check the effect of applying LSP.  相似文献   

19.
Electron paramagnetic resonance (EPR) experiments in vitro; spin trapping of the reactive oxygen/nitrogen species (superoxide radicals and nitric oxide, NO); gel zymography measurements in the tumor tissues, in the healthy and tumor-affected bone marrow (BM) samples of rats are carried out. The superoxide and NO generation rates are derived; matrix metalloproteinases (MMP-2 and MMP-9) concentrations are measured. Their changes after the incubation of BM samples with Guérin carcinoma cells at 37 °C are defined. It is shown that the impact of tumor cells on BM manifests in the metabolic disorder, increased concentrations of active forms of MMP-2 and MMP-9, increased production of superoxide and NO radicals. Correlation between the appearance and intensity of the broad EPR signal at g = 2.2–2.4 with the concentrations of active forms of MMP-2 and MMP-9, NO and superoxide radicals’ rates is observed. The obtained spatial and temporal changes of the measured parameters demonstrate the usefulness of the potential application of EPR imaging to study the mechanisms of tumor invasion. The EPR signal may indicate the presence of distant metastases, may become a part of diagnostics and used for the estimation of the therapeutic treatments in the pre-clinical studies. It is proposed that labile iron pool is responsible for the appearance of the EPR signal in tumor and BM samples.  相似文献   

20.
A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号