首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A spectroscopic study combining IR absorption and Raman scattering is presented for methylcyanodiacetylene (CH3C5N). Gas‐phase, cryogenic matrix‐isolated, and pure solid‐phase substance was analyzed. Out of 16 normal vibrational modes, 14 were directly observed. The analysis of the spectra was assisted by quantum chemical calculations of vibrational frequencies, IR absorption intensities, and Raman scattering activities at density functional theory and ab initio levels. Previous assignments of gas‐phase IR absorption bands were revisited and extended.  相似文献   

3.
For the first time : Thiofulminic acid (HCNS), the parent member of the nitrile sulfide family of reactive intermediates and potential interstellar species, was produced and characterized by IR spectroscopy for the first time. HCNS was generated in cryogenic matrices by 254 nm UV irradiation of 1,2,5‐thiadiazole (see figure).

  相似文献   


4.
The gas‐phase molecular structure of (CH3)3CSNO was investigated by using electron diffraction, allowing the first experimental geometrical parameters for an S‐nitrosothiol species to be elucidated. Depending on the orientation of the ?SNO group, two conformers (anti and syn) are identified in the vapor of (CH3)3CSNO at room temperature, the syn conformer being less abundant. The conformational landscape is further scrutinized by using vibrational spectroscopy techniques, including gas‐phase and matrix‐isolation IR spectroscopy, resulting in a contribution of ca. 80:20 for the anti:syn abundance ratio, in good agreement with the computed value at the MP2(full)/cc‐pVTZ level of approximation. The UV/Vis and resonance Raman spectra also show the occurrence of the conformational equilibrium in the liquid phase, with a moderate post‐resonance Raman signature associated with the 350 nm electronic absorption.  相似文献   

5.
6.
7.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

8.
N-Heteropolycycles are attractive as materials in organic electronic devices. However, a detailed understanding of the low-energy electronic excitation characteristics of these species is still lacking. In this work, the matrix isolation technique is applied to obtain high-resolution absorbance spectra for a series of tetracene and core-substituted N-analogues. The experimental electronic excitation spectra obtained for matrix-isolated molecules are then analysed with the help of quantum-chemical calculations. Additional lower energy excitation bands in the spectrum of the core-substituted N-derivatives of tetracene could be explained in terms of intensity borrowing from dipole-forbidden transitions due to Herzberg–Teller vibronic coupling. In the case of tetracene, evidence for the additional formation of London dimers (J aggregates) is found at higher tetracene concentrations in the matrix.  相似文献   

9.
10.
Studies on the Electronic Structures and Spectra of C78(CH2)3   总被引:1,自引:0,他引:1  
The structures and spectra of 20 possible isomers of C78(CH2)3 have been studied by using AM1,INDO/CIS and DFT methods. The results show that the most stable isomer is 1,2,3,4,5,6-C78(CH2)3 (A) with annulene structures,where three -CH2 groups are added to the 6/6 bonds located at the same hexagon passed by the shortest axis of C78 (C2v). Compared with that of C78 (C2v),the first absorption in the electronic spectrum of C78(CH2)3 (A) is blue-shifted because of its wider LUMO-HOMO energy gap. While the IR frequencies of the C–C bonds on the carbon cage are red-shifted owing to the formation of annulene structures and the extension of the conjugated system. The chemical shifts of the carbon atoms in 13C NMR spectra are moved upfield upon the addition.  相似文献   

11.
The open-chain trioxide CF(3)OC(O)OOOC(O)OCF(3) is synthesised by a photochemical reaction of CF(3)C(O)OC(O)CF(3), CO and O(2) under a low-pressure mercury lamp at -40 degrees C. The isolated trioxide is a colourless solid at -40 degrees C and is characterised by IR, Raman, UV and NMR spectroscopy. The compound is thermally stable up to -30 degrees C and decomposes with a half-life of 1 min at room temperature. Between -15 and +14 degrees C the activation energy for the dissociation is 86.5 kJ mol(-1) (20.7 kcal mol(-1)). Quantum chemical calculations have been performed to support the vibrational assignment and to discuss the existence of rotamers.  相似文献   

12.
13.
N-Heteropolycycles are among the most promising candidates for applications in organic devices. For this purpose, a profound understanding of the low-energy electronic absorbance and emission characteristics is of crucial importance. Herein, we report high-resolution absorbance and fluorescence spectra of pentacene ( PEN ) and 6,13-diazapentacene ( DAP ) in solid neon obtained using the matrix-isolation technique. Accompanying DFT calculations allow the assignment of specific vibrationally resolved signals to corresponding modes. Furthermore, we present for the first time evidence for the formation of van der Waals dimers of both substances. These dimers exhibit significantly different optical characteristics resulting from the change of electronic properties evoked by the incorporation of sp2 nitrogen into the molecular backbone.  相似文献   

14.
The fulvenallenyl radical was produced in 6 K neon matrices after mass‐selective deposition of C7H5? and C7H5+ generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5? and also by neutralization of C7H5+ in the matrix. The absorption system is assigned to the 1 2B1←X 2B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS‐CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5.  相似文献   

15.
We report the detection of triazane (N3H5) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3) and hydrazine (N2H4) of fundamental importance for the understanding of the stability of single‐bonded chains of nitrogen atoms and a potential key intermediate in hydrogen–nitrogen chemistry. The experimental results along with electronic‐structure calculations reveal that triazane presents a stable molecule with a nitrogen–nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron‐time‐of‐flight mass spectrometer. Isotopic substitution experiments exploiting [D3]‐ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5]‐triazane (N3D5).  相似文献   

16.
Xenon trioxide (XeO3) forms adducts with triphenylphosphine oxide, dimethylsulfoxide, pyridine-N-oxide, and acetone by coordination of the ligand oxygen atoms to the XeVI atom of XeO3. The crystalline adducts were characterized by low-temperature, single-crystal X-ray diffraction, and Raman spectroscopy. Unlike solid XeO3, which detonates when mechanically or thermally shocked, solid (C5H5NO)3(XeO3)2, [(C6H5)3PO]2XeO3, and [(CH3)2SO]3(XeO3)2 are insensitive to mechanical shock. The [(CH3)2SO]3(XeO3)2 adduct slowly decomposes over several days to (CH3)2SO2, Xe, and O2. All three complexes undergo rapid deflagration when ignited by a flame. Both [(C6H5)3PO]2XeO3 and (C5H5NO)3(XeO3)2 are room-temperature stable and the [(CH3)2CO]3XeO3 complex dissociates at room temperature to form a stable solution of XeO3 in acetone. The xenon coordination sphere of [(C6H5)3PO]2XeO3, a distorted square-pyramid, provides the first example of a five-coordinate XeO3 complex with only two Xe- - -O adduct bonds. The xenon coordination spheres of the remaining adducts are distorted octahedra, comprised of three Xe- - -O secondary bonds that are approximately trans to the primary Xe−O bonds of XeO3. Quantum-chemical calculations were used to assess the nature of the Xe- - -O adduct bonds, which are described as predominantly electrostatic bonds between the nucleophilic oxygen atoms of the bases and the σ-holes of the electrophilic xenon atoms.  相似文献   

17.
Metathetical processes were used to convert N5SbF6 into N5[B(CF3)4] and (N5)2SnF6. The latter salt is especially noteworthy because it contains two N5+ ions per anion, thus demonstrating that salts with touching polynitrogen cations can be prepared. This constitutes an important milestone towards our ultimate goal of synthesizing a stable, ionic nitrogen allotrope. The stepwise decomposition of (N5)2SnF6 yielded N5SnF5. Multinuclear NMR spectra show that in HF the SnF5- ion exists as a mixture of Sn2F(10)(2-) and Sn4F(20)(4-) ions. Attempts to isolate FN5 from the thermolysis of (N5)2SnF6 were unsuccessful, yielding only the expected decomposition products, FN3, N2, trans-N2F2, NF3, and N2.  相似文献   

18.
Matrix-isolation experiments have afforded the means of preparing the hitherto unknown sulfur(II) fluoride, methanesulfenyl fluoride, CH3SF. Broadband UV-visible irradiation of methyl thiofluoroformate, FC(O)SCH3, isolated in a solid Ar matrix results, first, in photoisomerization of the syn into the anti form of the molecule, and, subsequently, in the elimination of CO with the concomitant formation of CH3SF. Continued irradiation brings about tautomerization of this product with the detachment and migration of a hydrogen from the methyl group to give the molecular complex H2C==S...HF. The changes have been monitored and the photoproducts detected and identified by the IR spectra of the matrices, and the conclusions confirmed: 1) with reference to the corresponding behavior of the perdeuterated molecule FC(O)SCD3; 2) by analogy with the properties of related molecules, for example, ClC(O)SCH3, CH3SCl, and H2C==S...HCl, and; 3) by comparison with the vibrational properties simulated for the different molecules by ab initio and density functional theory methods.  相似文献   

19.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

20.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号