首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stokes–Einstein (SE) and Stokes–Einstein–Debye (SED) relations in the neat ionic liquid (IL) [C2mim][NTf2] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)? H bond in the cation C2mim+, and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non‐Gaussian parameter α(t). If α(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.  相似文献   

3.
Conventional free‐radical copolymerization of acrylonitrile (AN) and styrene (St) was realized in room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]) and 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim][PF6]), under mild conditions. The copolymerization in RTILs was more rapid than that in traditional solvent DMF. Poly(styrene‐co‐acrylonitrile) (SAN) prepared in RTILs had higher molecular weight than that prepared in DMF or by bulk copolymerization. SAN with bimodal molecular weight distribution (MWD) were obtained in most of the reaction conditions in [Bmim][BF4] and some conditions in [Bmim][PF6]. By the analysis of reaction phenomena and fluorescence behavior, the reason of the difference in MWD could be attributed to the difference of reaction system compatibility mainly caused by the immiscibility of macromolecule with RTIL. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4420–4427, 2006  相似文献   

4.
Electrical conductivity (σ), viscosity (η), and self‐diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium‐based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmIm][BF4], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the 1H NMR chemical shifts of the ionic liquids. The self‐diffusion coefficients D of the cation and anion of [HmIm][CH3COO] in D2O and in [D6]DMSO are determined by using 1H nuclei with pulsed field gradient spin‐echo NMR spectroscopy.  相似文献   

5.
Phthalic anhydride reacts rapidly with Aromatic and aliphatic amines in ionic liquid [Bmim][PF6] or [Bmim][BF4] at 130 °C to give N‐aryl and N‐alkylphthalimides in excellent yields.  相似文献   

6.
Density, electrical conductivity and viscosity of binary liquid mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf2], with γ-butyrolactone (GBL) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes have been calculated from the experimental densities and fitted with the Redlich–Kister polynomial equation. These values are positive over the whole range of ionic liquid mole fraction and at all temperatures. In the range between 0.55 and 0.6 [bmpyrr][NTf2] mole fraction, an ideal behaviour of the ionic liquid mixture with molecular solvent was observed for the first time. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between GBL and selected ionic liquid. Positive values of these properties for both components also indicate weaker interactions between GBL and IL compared to the pure components. From the viscosity results, the Angell strength parameter was calculated and found to be 3.24 indicating that [bmpyrr][NTf2] is a “fragile” liquid. From the volumetric and transport properties obtained, formation of the [bmpyrr]+ micellar structures was also discussed. All the results are compared to those obtained for imidazolium-based ionic liquid with GBL.  相似文献   

7.
The subject of this article is the combined interpretation of intradiffusion and mutual‐diffusion data for polymer–solvent mixtures in terms of integrals over velocity self‐correlation functions and velocity cross‐correlation functions. The combination of mutual‐diffusion, intradiffusion, and activity data allows the evaluation of velocity‐correlation coefficients (VCCs) and distinct‐diffusion coefficients in systems containing one monodisperse solute. This study is the first attempt to extend these approaches to polymers that are polydisperse solutes. Because of the polydispersity, this correlation analysis may become critical for polymers. Its application to polydisperse samples requires the reduction of intradiffusion and mutual‐diffusion coefficients to the same average. After such a reduction, the VCCs and distinct‐diffusion coefficients are evaluated for a homologous series of poly(ethylene glycol)s (PEGs). Attractive PEG–PEG interactions depend on the chain length and concentration of PEG. In this analysis, network formation in PEG–water systems appears to be a smooth process. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 43–51, 2002  相似文献   

8.
CuI‐catalyzed coupling reactions of aryl iodides and electron‐deficient aryl bromides with nitrogen‐containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of [Bmim][BF4] as the solvent, potassium phosphate as the base, and CuI as the catalyst. The CuI and [Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.  相似文献   

9.
A basic ionic liquid, 1‐butyl‐3‐methyl imidazolium hydroxide ([Bmim]OH), was synthesized and used as the additives in an iron‐mediated atom transfer radical polymerization with activators generated by electron transfer (AGET ATRP) of methyl methacrylate in bulk and solution, using FeCl3 · 6H2O as the catalyst, ethyl 2‐bromoisobutyrate as the initiator, vitamin C (Vc) as the reducing agent, and tetrabutylammonium bromide or tetra‐n‐butylphosphonium bromide as the ligand. Catalytic amount of [Bmim]OH could enhance the polymerization rate and produce poly(methyl methacrylate) with controllable molecular weights and narrow molecular weight distributions (Mw/Mn = 1.3–1.4). The nature of controlled/“living” free radical polymerization in the presence of basic ionic liquid was further confirmed by chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF‐TrFE) has been investigated. 1‐ethyl‐3‐methylimidazolium acetate, [C2mim][OAc], 1‐ethyl‐3‐methylimidazolium triflate, [C2mim][(CF3SO3)], 1‐ethyl‐3‐methylimidazolium lactate, [C2mim][Lactate], 1‐ethyl‐3‐methylimidazolium thiocyanate, [C2mim][SNC] and 1‐ethyl‐3‐methylimidazolium hydrogen sulfate [C2mim][HSO4] have been used in SPE prepared by solvent casting. The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC]>[CF3SO3)]>[HSO4]>[Lactate]>[OAc], which is mainly dependent on the viscosity of the ionic liquid.  相似文献   

11.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

12.
Experimental densities, electrical conductivities and dynamic viscosities of the pure 1-butyl-1-methylpyrrolydinium dicyanamide ionic liquid, [bmpyrr][DCA], and its binary liquid mixtures with γ-butyrolactone (GBL) were measured at temperatures from (273.15 to 323.15) K and at pressure of 0.1 MPa over the whole composition range. From the experimental density data the related excess molar volumes were calculated and fitted using Redlich–Kister’s polynomial equation. Obtained values are negative in the whole range of ionic liquid mole fraction and at all temperatures. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution were also calculated, in order to obtain information about the interactions between GBL and the selected ionic liquid. Negative values of these properties for both components indicate stronger interactions between GBL and IL compared to the pure components and better packing due to the differences in size and shape of the studied molecules. From the viscosity results, the Angell strength parameter was calculated and found to be 5.47 indicating that [bmpyrr][DCA] is a “fragile” liquid. All the results are compared with those obtained for binary mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf2], with GBL.  相似文献   

13.
For the first time, cefadroxil was synthesized from 7‐Amino‐3‐desacetoxycephalosporanic acid and d ‐hydroxyphenylglycine methyl ester in [Bmim][NTf2]‐phosphate cosolvent capable of dissolving the substrates using the penicillin G acylase (PGA) immobilized on the micrometer‐size magnetic polymer microspheres having high activity of 2,083 U/g. The high synthesis/hydrolysis (S/H) ratio of 1.12 was achieved with 79.0% yield, where only the S/H ratio of 0.19 and yield of 20.0% was obtained using free PGA under the identical optimum reaction conditions. Cefadroxil had been synthesized efficiently in [Bmim][NTf2]‐phosphate cosolvent by the magnetic immobilized PGA, which illuminated that there are two very critical and essential designs, that is, effective support and suitable solvent system by PGA, in enzymatic synthesis of cefadroxil. Obviously, there is great potential for the magnetic immobilized PGA and ionic liquid solvent in application to biocatalysis.  相似文献   

14.
首次通过不对称阴离子的钠盐/钾盐和不同的季胺化的咪唑,吡咯溴盐/氯盐进行离子交换,合成了一系列含氰基官能团的不对称阴离子功能化离子液体。通过红外、核磁共振、质谱和元素分析对离子液体的结构进行表征;通过TGA对离子液体的热稳定性进行测定,结果发现不对称功能化离子液体具有良好的热稳定性,其分解温度在219-319℃范围内。将功能化离子液体[Bmim][C(CN)2COCH3]作为弱配体应用于模型的Suzuki偶联反应,发现在反应中加入功能化离子液体[Bmim][C(CN)2COCH3]可以使反应收率提高10-15%。  相似文献   

15.
In the work presented here, well‐dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic‐liquid precursors by using 1‐n‐butyl‐3‐methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic‐liquid precursors. By adjusting the molar ratios of Fe(NO3)3 ? 9H2O to [Bmim][H2PO4] as well as the composition of ionic‐liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic‐liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton‐like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible‐light irradiation. Our measurements indicate that the photocatalytic activity of as‐prepared Fenton‐like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton‐like catalysts with different morphologies, and suggest a promising new strategy for crystal‐facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton‐like process.  相似文献   

16.
The rate of the substitution reaction of (R)-3-chloro-3,7-dimethyloctane (1) with either methanol or benzyl alcohol in mixtures containing the ionic liquid [Bmim][N(CF3SO2)2] was monitored using 35Cl NMR spectroscopy. The enantiomeric excess of the product, (S)-3-methoxy-3,7-dimethyloctane (2a), was analyzed using chiral gas chromatography. This product showed a decreasing enantiomeric excess with increasing concentration of ionic liquid. The rate of reaction of substrate 1 in each case varied with the concentration of the ionic liquid. Polarity measurements of the solvent mixtures were undertaken by standard methods, which are compared both to each other and to the observed rates. Solvent reorganization and selective solvation are also each proposed as contributing to the difference in the observed rates of reaction.  相似文献   

17.
A mild and efficient route for the synthesis of quinolines and polycyclic quinolines utilizing Gadolinium triflate (Gd(OTf)3) as a novel catalyst via Friedländer annulation in ionic liquid 1‐n‐butyl‐3‐methyl‐imidazolium hexafluorophosphate [Bmim][PF6] under mild conditions was described.  相似文献   

18.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

19.
An ultrasound‐enhanced in situ solvent formation microextraction has been developed first time and compared with ultrasound‐enhanced ionic‐liquid‐assisted dispersive liquid–liquid microextraction for the HPLC analysis of acaricides in environmental water samples. A ionic liquid ([C8MIM][PF6]) was used as the green extraction solvent through two pathways. The experimental parameters, such as the type and volume of both of the extraction solvent disperser solvent, ultrasonication time, and salt addition, were investigated and optimized. The analytical performance using the optimized conditions proved the feasibility of the developed methods for the quantitation of trace levels of acaricides by obtaining limits of detection that range from 0.54 to 3.68 μg/L. The in situ solvent formation microextraction method possesses more positive characteristics than the ionic‐liquid‐assisted dispersive liquid–liquid microextraction method (except for spirodiclofen determination) when comparing the validation parameters. Both methods were successfully applied to determining acaricides in real water samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号