首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we investigate the effect of the electrophiles and the nucleophiles for eight catalysts in the catalytic SN1 type substitution of alcohols with different degree of activation by sulfur‐, carbon‐, oxygen‐, and nitrogen‐centered nucleophiles. The catalysts do not show any general variance in efficiency or selectivity with respect to the alcohols and follow the trend of alcohol reactivity. However, when it comes to the nucleophile, the eight catalysts show general and specific variances in the efficiency and selectivity to perform the desired substitution. Interestingly, the selectivity of the alcohols to produce the desired substitution products was found to be independent of the electrophilicity of the generated carbocations but highly dependent on the ease of formation of the cation. Catalysts based on iron(III), bismuth(III), and gold(III) show higher conversions for S‐, C‐, and N‐centered nucleophiles, and BiIII was the most efficient catalyst in all combinations. Catalysts based on rhenium(I) or rhenium(VII), palladium(II), and lanthanum(III) were the most efficient in performing the nucleophilic substitution on the various alcohols with the O‐centered nucleophiles. These catalysts generate the symmetrical ether as a by‐product from the reactions of S‐, C‐, and N‐centered nucleophiles as well, resulting in lower chemoselectivity.  相似文献   

2.
Unique nucleophilic substitution and addition reactions of nitrogen and sulfur nucleophiles with 1,4-quinones in aqueous suspension with amines and thiols have recently been demonstrated by us.2 However, the reactivity of oxygen nucleophiles toward nucleophilic substitution compared to nitrogen and sulfur nucleophiles ‘on water’ is not facile. An unprecedented economical, green methodology approach using ordinary laundry detergent (LD; washing powder, 0.5 mol %, reusable)/SDS as surfactant ‘in water’ for nucleophilic substitution by oxygen nucleophiles in 1,4-quinones in excellent yields has been demonstrated.  相似文献   

3.
Nucleophile–nucleophile coupling is a challenging transformation in organic chemistry. Herein we present a novel umpolung strategy for α‐functionalization of aldehydes with nucleophiles. The strategy uses organocatalytic enamine activation and quinone‐promoted oxidation to access O‐bound quinol‐intermediates that undergo nucleophilic substitution reactions. These quinol‐intermediates react with different classes of nucleophiles. The focus is on an unprecedented organocatalytic oxidative α‐thiolation of aldehydes. The reaction scope is demonstrated for a broad range of thiols and extended to chemoselective bioconjugation, and applicable to a large variety of aldehydes. This strategy can also encompass organocatalytic enantioselective coupling of α‐branched aldehydes with thiols forming quaternary thioethers. Studies indicate a stereoselective formation of the intermediate followed by a stereospecific nucleophilic substitution reaction at a quaternary stereocenter, with inversion of configuration.  相似文献   

4.
Perfluoroaromatics, such as perfluoropyridine and perfluorobenzene, are privileged synthetic scaffolds in organofluorine methodology, undergoing a series of regioselective substitution reactions with a variety of nucleophiles. This unique chemical behavior allows for the synthesis of many perfluoroaromatic derived molecules with unique and diverse architectures. Recently, it has been demonstrated that perfluoropyridine and perfluorobenzene can be utilized as precursors for a variety of materials, ranging from high performance polyaryl ethers to promising drug scaffolds. In this work, using density functional theory, we investigate the possibility of perfluoropyrimidine, perfluoropyridazine, and perfluoropyrazine participating in similar substitution reactions. We have found that the first nucleophilic addition of a phenoxide group substitution on perfluoropyrimidine and on perfluoropyridazine would happen at a site para to one of the nitrogen atoms. While previous literature points to mesomeric effects as the primary cause of this phenomenon, our work demonstrates that this effect is enhanced by the fact that the transition states for these reactions result in bond angles that allow the phenoxide to π-complex with the electron-deficient diazine ring. The second substitution on perfluoropyrimidine and on perfluoropyridazine is most likely to happen at the site para to the other nitrogen. The second substitution on perfluoropyrazine is most likely to happen at the site para to the first substitution. The activation energies for these reactions are in line with those reported for perfluoropyridine and suggest that these platforms may also be worth investigation in the lab as possible monomers for high performance polymers.  相似文献   

5.
A set of seven non-substituted tri-atom-components (TACs) participating in [3+2] cycloaddition (32CA) reactions has been studied using the reactivity indices defined within the conceptual DFT at the B3LYP/6-31G(d) level of theory. This series of TACs shows a zwitterionic structure and low reactivity towards ethylene. The general characteristic of these TACs is their high nucleophilic and a low electrophilic behaviour. Activation energies computed at the MPWB1K/6-311G(d) level in dichloromethane point to that non-substituted TACs react quickly toward dicyanoethylene showing their ability to react towards electron-deficient ethylenes. However, when the TACs are electrophilically activated by an appropriate substitution there seems to be insufficient activation to react toward electron-rich ethylenes. The electrophilic activation of the TAC moiety for nucleophilic attacks was only determined by the coordination with a Lewis acid. All 32CA reactions studied in this work presented high regioselectivity. The polar character of these 32CA reactions is associated with the global charge transfer found at the TS, which is in agreement with a zwitterionic-type (zw-type) mechanism. According to our results, the present theoretical study suggests that the substitution is required in both, TACs and the ethylene species, in order to experimentally perform these zw-type 32CA reactions under mild conditions.  相似文献   

6.
The effects of phosphorus substituents on the reactivity of α-alkoxyphosphonium salts with nucleophiles has been explored. Reactions of α-alkoxyphosphonium salts, prepared from various acetals and tris(o-tolyl)phosphine, with a variety of nucleophiles proceeded efficiently. These processes represent the first examples of high-yielding nucleophilic substitution reactions of α-alkoxyphosphonium salts. The reactivity of these salts was determined by a balance between steric and electronic factors, respectively, represented by cone angles θ and CO stretching frequencies ν (steric and electronic parameters, respectively). In addition, a novel reaction of α-alkoxyphosphonium salts derived from Ph(3) P with Grignard reagents was observed to take place in the presence of O(2) to afford alcohols in good yields. A radical mechanism is proposed for this process that has gained support from isotope-labeling and radical-inhibition experiments.  相似文献   

7.
Computational studies were performed in an effort to understand the relative reactivity of oxoesters and thioesters in nucleophilic acyl transfer reactions. Transition state models were developed for the reactions of methyl acetate and methyl thioacetate with hydroxide, ammonia, and methylcyanoacetate carbanion. Quantum mechanical calculations based on these models reproduced experimental observations that oxoesters and thioesters have similar reactivity toward hydroxide while thioesters are about 100-fold and at least 2000-fold more reactive than oxoesters toward amine and carbanion nucleophiles, respectively. NBO analysis was performed to elucidate the role of electron delocalization in reactant and transition state stabilization. These calculations indicate similar losses of delocalization energy for the oxoester and thioester in going from the reactants to the transition state in reaction with hydroxide while the loss of delocalization energy is significantly greater for the oxoester in reactions with the other nucleophiles. Bond rotational analysis of the transition states for the reactions with hydroxide and ammonia provide support for an important role of the p(X) --> sigma(C-Nu) interaction (X = O or S of the oxoester or thioester respectively, Nu = nucleophile) in governing the reactivity of oxoesters and thioesters in nucleophilic acyl substitution.  相似文献   

8.
Latent nucleophiles are compounds that are themselves not nucleophilic but can produce a strong nucleophile when activated. Such nucleophiles can expand the scope of Lewis base catalyzed reactions. As a proof of concept, we report that N‐silyl pyrroles, indoles, and carbazoles serve as latent N‐centered nucleophiles in substitution reactions of allylic fluorides catalyzed by Lewis bases. The reactions feature broad scopes for both reaction partners, excellent regioselectivities, and produce enantioenriched N‐allyl pyrroles, indoles, and carbazoles when chiral cinchona alkaloid catalysts are used.  相似文献   

9.
The kinetic competition of sulfur and nitrogen nucleophiles L in the substitution reactions of cisplatin derivatives, cis-[Pt(II)(NH(3))(2)(X)(OH(2))](n)(+) + L --> cis-[Pt(II)(NH(3))(2)(X)(L)](m)(+) + H(2)O (X = Cl(-), H(2)O), has been studied using density functional theory and continuum dielectric calculations. The calculations reveal an intrinsic kinetic preference of platinum(II) for nitrogen over sulfur ligands. However, biologically relevant substituents can mask this preference for nitrogen nucleophiles. Investigation of the activation free energies of the substitution reactions in dependence of the dielectric constant epsilon demonstrates the microenvironment to be crucial in the binding of cisplatin to its intracellular targets. The fused aromatic heterocycle of guanine stabilizes the transition state for platination at a smaller epsilon more efficiently than do the functional groups of amino acid residues. The results of this work suggest a relatively facile platination of guanine-N7 sites of DNA in regions of low epsilon, particularly in the proximity of histone cores.  相似文献   

10.
Herein, we report the promising use of n‐oligoethylene glycols (oligoEGs) as mutifunctional promoters for nucleophilic‐substitution reactions employing alkali metal salts. Among the various oligoEGs tested, pentaethylene glycol (pentaEG) had the most efficient catalytic activity. In particular, when compared with other nucleophiles examined, a fluorine nucleophile generated from CsF was significantly activated by the pentaEG promoter. We also performed various facile nucleophilic‐displacement reactions, such as the halogenation, acetoxylation, thioacetoxylation, nitrilation, and azidation of various substrates with potassium halides, acetate, thioacetate, cyanide, and sodium azide, respectively, in the presence of the pentaEG promoter. All of these reactions provided their desired products in excellent yields. Furthermore, the combination of pentaEG and a tert‐alcohol medium showed tremendous efficiency in the nucleophilic‐displacement reactions (fluorination and methoxylation) of base‐sensitive substrates with basic nucleophiles (cesium fluoride and potassium methoxide, respectively). The catalytic role of oligoEGs was examined by quantum‐chemical methods. The oxygen atoms in oligoEGs were found to act as Lewis bases on the metal cations to produce the “flexible” nucleophile, whereas the two terminal hydroxy (OH) groups acted as “anchors” to orientate the nucleophile and the substrate into an ideal configuration for the reaction.  相似文献   

11.
Despite the synthesis of a boryl anion by Yamashita et al. in 2006, compounds that show boron‐centered nucleophilicity are still rare and sought‐after synthetic goals. A number of such boryl anions have since been prepared, two of which were reported to react with methyl iodide in apparent nucleophilic substitution reactions. One of these, a borolyl anion based on the borole framework, has now been found to display single‐electron‐transfer (SET) reactivity in its reaction with triorganotetrel halides, which was confirmed by the isolation of the first neutral borole‐based radical. The radical was characterized by elemental analysis, single‐crystal X‐ray crystallography, and EPR spectroscopy, and has implications for the understanding of boron‐based nucleophilic behavior and the emergent role of boron radicals in synthesis. This radical reactivity was also exploited in the synthesis of compounds with rare B? Sn and B? Pb bonds, the latter of which was the first isolated and structurally characterized compound with a “noncluster” B? Pb bond.  相似文献   

12.
The first and second substitution reactions binding of the anticancer drug trans‐[Pt((CH3)2C?NOH)((CH3)2CHNH2)Cl2] to purine bases were studied computationally using a combination of density functional theory and isoelectric focusing polarized continuum model approach. Our calculations demonstrate that the trans monoaqua and diaqua reactant complexes (RCs) can generate either trans‐ or cis‐monoadducts via identical or very similar trans trigonal‐bipyramidal transition‐state structures. Furthermore, these monoadducts can subsequently close by coordination to the adjacent purine bases to form 1,2‐intrastrand Pt‐DNA adducts and eventually distort DNA in the same way as cisplatin. Thus, it is likely that the transplatin analogues have the same mechanism of anticancer activity as cisplatin. For the first substitutions, the activation free energies of monoaqua complexes are always lower than that of diaqua complexes. The lowest activation energy for monoaqua substitutions is 16.2 kcal/mol for guanine and 16.5 kcal/mol for adenine, whereas the lowest activation energy for diaqua substitutions is 17.1 kcal/mol for guanine and 25.9 kcal/mol for adenine. For the second substitutions, the lowest activation energy from trans‐monoadduct to trans‐diadduct is 19.1 kcal/mol for GG adduct and 20.7 kcal/mol for GA adduct, whereas the lowest activation energy from cis‐monoadduct to cis‐diadduct is 18.9 kcal/mol for GG adduct and 18.5 kcal/mol for GA adduct. In addition, the first and second substitutions prefer guanine over adenine, which is explained by the remarkable larger complexation energy for the initial RC in combination with lower activation energy for the guanine substitution. Overall, the hydrogen‐bonds play an important role in stabilizing these species of the first and second substitutions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
We have computationally studied the bimolecular nucleophilic substitution (SN2) reactions of MnNH2(n−1) + CH3Cl (M+ = Li+, Na+, K+, and MgCl+; n = 0, 1) in the gas phase and in tetrahydrofuran solution at OLYP/6-31++G(d,p) using polarizable continuum model implicit solvation. We wish to explore and understand the effect of the metal counterion M+ and of solvation on the reaction profile and the stereochemical preference, that is, backside (SN2-b) versus frontside attack (SN2-f). The results were compared to the corresponding ion-pair SN2 reactions involving F and OH nucleophiles. Our analyses with an extended activation strain model of chemical reactivity uncover and explain various trends in SN2 reactivity along the nucleophiles F, OH, and , including solvent and counterion effects. © 2019 Wiley Periodicals, Inc.  相似文献   

14.
The electrophilic/nucleophilic character of a series of captodative (CD) ethylenes involved in polar cycloaddition reactions has been studied using DFT methods at the B3LYP/6-31G(d) level of theory. The transition state structures for the electrophilic/nucleophilic interactions of two CD ethylenes toward a nucleophilically activated ethylene, 2-methylene-1,3-dioxolane, and an electrophilically activated ethylene, 1,1-dicyanoethyelene, have been studied, and their electronic structures have been characterized using both NBO and ELF methods. Analysis of the reactivity indexes of the CD ethylenes explains the reactivity of these species. While the electrophilicity of the molecules accounts for the reactivity toward nucleophiles, it is shown that a simple index chosen for the nucleophilicity, Nu, based on the HOMO energy is useful explaining the reactivity of these CD ethylenes toward electrophiles.  相似文献   

15.
The effects of phosphorus substituents on the reactivity of α-alkoxyphosphonium salts with nucleophiles has been explored. Reactions of α-alkoxyphosphonium salts, prepared from various acetals and tris(o-tolyl)phosphine, with a variety of nucleophiles proceeded efficiently. These processes represent the first examples of high-yielding nucleophilic substitution reactions of α-alkoxyphosphonium salts. The reactivity of these salts was determined by a balance between steric and electronic factors, respectively, represented by cone angles θ and CO stretching frequencies ν (steric and electronic parameters, respectively). In addition, a novel reaction of α-alkoxyphosphonium salts derived from Ph3P with Grignard reagents was observed to take place in the presence of O2 to afford alcohols in good yields. A radical mechanism is proposed for this process that has gained support from isotope-labeling and radical-inhibition experiments.  相似文献   

16.
17.
The first and second substitution reactions between activated (hydrolyzed) cisplatin, Pt(NH3)2(H2O)2(2+), and purine bases guanine and adenine are explored using the B3LYP hybrid functional, IEF-PCM solvation models, and large basis sets. The computed free energy barrier for the first substitution is 19.5 kcal/mol for guanine (exptl value = 18.3 kcal/mol) and 24.0 kcal/mol for adenine. The observed predominance toward guanine in the first substitution is explained in terms of significantly larger stabilization energy for the initially formed complex, compared with adenine, in combination with favored kinetics, and represents a revised view of the proposed mechanism for cisplatin binding to DNA. For the second substitution, the computed barrier for Pt(NH3)2G2(2+) head-to-head formation is 22.5 kcal/mol, in very good agreement with experimental data for adduct closure (23.4 kcal/mol). Again, a higher stability in complexation with G over A is ascribed as the main contributing factor favoring G over A substitution. The calculations provide a first explanation for the predominance of 1,2-d(GpG) over 1,2-d(ApG) intrastrand didentate adducts, and the origin of the 5'-3' direction specificity of the 1,2-d(ApG) adducts.  相似文献   

18.
Hydrolysis of cisplatin, the most widely used anticancer drug in the world, is believed to be the key activation step before the drug reaching its intracellular target DNA.To obtain an accurate hydrolysis theory for this important class of square-planar Pt(II) complexes, three typical reactions, i.e., the first and second hydrolyses of cisplatin and the hydrolysis of [Pt(dien)Cl](+) (dien = diethylenetriamine), were studied at the experimental temperature with the solvent effect using mPW1PW91/SDD from a comprehensive methodological study on the Hartree-Fock (HF) ab initio method, electron correlation methods, pure density functional theory (DFT) methods, and hybrid HF-DFT methods with several basis sets. The true five stationary states in the second-order nucleophilic substitution (S(N)2) pathway for the hydrolysis process, namely, reactant (R) --> intermediate 1 (I1) --> TS --> intermediate 2 (I2) --> product (P) were obtained and characterized theoretically for the first time. The most remarkable structural variations and the associated atomic charge variations in the hydrolysis process were found to occur in the equatorial plane of the five-coordinate trigonal-bipyramidal (TBP)-like structures of I1, TS, and I2. The reaction with the TS structure of smaller L-M-E angle and more lengthened M-L and M-E bonds was found to have a smaller Gibbs free energy change and accordingly the better hydrolysis yield. It is found that the sum of the three concentric angles in the TBP's equator is near 360 degrees in I1 and I2 and is almost 360 degrees in TS in each reaction. The associated energy profiles again demonstrated a typical S(N)2 reaction curve. The computed forward and backward reaction enthalpy (Delta H(++)) and reaction entropy (Delta S(++)) in the rate-determining step I1 --> TS --> I2 are in good agreement with the experiments. Natural bonding orbital population analysis shows that the charge-separating extent follows the same order of Delta G in studied reactions. Comparing with the computational results of gas-phase reactions, it can be concluded that the solvent effect should be considered to obtain an accurate hydrolysis picture. The most affected structural parameters after solvation are related to the equatorial plane of the TBP-like geometry. The results provide theoretical guidance on detailed understanding on the mechanism of the hydrolysis of cisplatin, which could be useful in the design of novel Pt-based anticancer agents.  相似文献   

19.
Nucleophilic substitution at the anomeric positions of tetrahydropyranyl (THP) and related carbohydrate‐derived esters that proceeded through pyridinium‐type salt intermediates have been developed. Treatment of the 6‐substituted α‐acetoxy‐tetrahydropyrans with TMSOTf (TMS=trimethylsilyl) and 2‐substitutited pyridines, such as 2‐p‐tolylpyridine and 2‐methoxypyridine, led to the efficient generation of cis‐pyridinium‐type salts. These salts reacted with various nucleophiles, such as alcohols, azides, and organozinc reagents, to form nucleophilic‐substitution products. A characteristic feature of these processes was that they took place under mild conditions, which did not affect acid‐labile protecting groups. Furthermore, the reactions that employed azides and C‐nucleophiles generated 2,6‐trans products with high degrees of stereoselectivity.  相似文献   

20.
The nucleophilic substitution of the reactive halogen atoms of clathrochelate precursors with soft nucleophilic agents was promoted by cadmium(II) ion using various types of cadmium-containing compounds. Cadmium(II) activates the C–Hal bond both by the coordination of halogen substituents to this ion and the formation of anionic forms of a nucleophilic agent with cadmium amides, that increase the electron density on a reactive site of this agent. The cadmium-promoted substitution reactions of the reactive chlorine ribbed substituents in the di- and hexachlorine-containing clathrochelate precursors afforded the clathrochelate ribbed-functionalized derivatives of soft nucleophiles [alcohols (including fluorinated ones) and aromatic amines (including the nucleophiles with electron-withdrawing substituents)] by efficient one-pot procedures in high yields under mild conditions with generated in situ low-basic cadmium(II) alcoholates and amides. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV–Vis, 57Fe Mössbauer, and NMR spectroscopies, and X-ray crystallography. The potential of cadmium-promoted reactions for synthesis of different types of organic and coordination compounds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号