首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Nitrogen is an element of utmost importance in chemistry, biology and materials science. Of its two NMR‐active isotopes, 14N and 15N, solid‐state NMR (SSNMR) experiments are rarely conducted upon the former, due to its low gyromagnetic ratio (γ) and broad powder patterns arising from first‐order quadrupolar interactions. In this work, we propose a methodology for the rapid acquisition of high quality 14N SSNMR spectra that is easy to implement, and can be used for a variety of nitrogen‐containing systems. We demonstrate that it is possible to dramatically enhance 14N NMR signals in spectra of stationary, polycrystalline samples (i.e., amino acids and active pharmaceutical ingredients) by means of broadband cross polarization (CP) from abundant nuclei (e.g., 1H). The BR oadband A diabatic IN version C ross‐ P olarization ( BRAIN–CP ) pulse sequence is combined with other elements for efficient acquisition of ultra‐wideline SSNMR spectra, including W ideband U niform‐ R ate S mooth‐ T runcation ( WURST ) pulses for broadband refocusing, C arr– P urcell M eiboom– G ill ( CPMG ) echo trains for T2‐driven S/N enhancement, and frequency‐stepped acquisitions. The feasibility of utilizing the BRAIN–CP/WURST–CPMG sequence is tested for 14N, with special consideration given to (i) spin‐locking integer spin nuclei and maintaining adiabatic polarization transfer, and (ii) the effects of broadband polarization transfer on the overlapping satellite transition patterns. The BRAIN–CP experiments are shown to provide increases in signal‐to‐noise ranging from four to ten times and reductions of experimental times from one to two orders of magnitude compared to analogous experiments where 14N nuclei are directly excited. Furthermore, patterns acquired with this method are generally more uniform than those acquired with direct excitation methods. We also discuss the proposed method and its potential for probing a variety of chemically distinct nitrogen environments.  相似文献   

2.
The internal and overall motions of 1,3- and 1,4-diethylpyridinium bromides have been studied by 13C relaxation. The enthalpies of activation for the rotation of the ethyl groups in positions 1 and 3 are deduced from the temperature dependence of the T1 values of the methylene and methine carbons. The 14N quadrupolar relaxation time, Tq, together with 13C relaxation data provide an estimate of the 14N quadrupolar coupling constants.  相似文献   

3.
A variable B0 field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high‐precision measurement of 93Nb NMR interaction parameters such as the isotropic chemical shift (δiso), quadrupole coupling constant and asymmetry parameter (CQ and ηQ), chemical shift span/anisotropy and skew/asymmetry (Ωδ and κ/ηδ) and Euler angles (α, β, γ) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR‐CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from NbV in most oxo environments, this study emphasises that a thorough variable B0 approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (?1/2?+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these 93Nb broadline data. These measurements reveal that the 93Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the NbV positions, with CQ values in the 0 to >80 MHz range being measured; similarly, the δiso (covering an approximately 250 ppm range) and Ω values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb? O bond angles and distances defining the immediate NbV oxo environment is complicated by longer‐range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the 93Nb NMR interaction parameters generated here are the all‐electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR‐CASTEP DFT approaches, which account for the short‐ and long‐range symmetries, periodicities and interaction‐potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.  相似文献   

4.
We report the results of a comprehensive 81Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium bromide ([C4mim]Br) and 1‐butyl‐2,3‐dimethylimidazolium bromide ([C4C1mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of 81Br spin‐lattice and spin‐spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. 81Br quadrupolar coupling constants (CQ) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7–53 MHz depending on ion pair structure. The CQ can be correlated with the distance between the cation–anion pairs in all the three states. The 81Br CQ values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C4C1mim]Br has higher ionicity than [C4mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The paraelectric–ferroelectric phase transition in two isostructural metal–organic frameworks (MOFs) [NH4][M(HCOO)3] (M=Mg, Zn) was investigated by in situ variable‐temperature 25Mg, 67Zn, 14N, and 13C solid‐state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder–order transition of NH4+ cations causes a change in dielectric properties. It is thought that [NH4][Mg(HCOO)3] exhibits a higher transition temperature than [NH4][Zn(HCOO)3] due to stronger hydrogen‐bonding interactions between NH4+ ions and framework oxygen atoms. 25Mg and 67Zn NMR parameters are very sensitive to temperature‐induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric–ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although 25Mg and 67Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal‐atom environments in [NH4][M(HCOO)3] give rise to relatively narrow spectra that can be acquired in 30–60 min at a low magnetic field of 9.4 T. Complementary 14N and 13C SSNMR experiments were performed to probe the role of NH4+–framework hydrogen bonding in the paraelectric–ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4][M(HCOO)3] system and shows great potential for molecular‐level studies on electric phenomena in a wide variety of MOFs.  相似文献   

6.
Density functional theory (DFT) calculations were performed to realize the effects of the N–O group on the reactivity and electronic properties of 3-amino-1,2,4-benzotriazines. The electric field gradient, EFG, tensors of 14N and 17O nuclei and natural bond orbital (NBO) analysis in the tirapazamine (TPZ) and its four derivatives were calculated at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) method in the gas phase. The NBO analysis reveal that the bond strength, proton affinity and position of N–O group in the heterocyclic ring have major influence on the reactivity of considered molecules. Accordingly, we suggest that the TPZ and 4-oxide (d) structures due to having a weaker N–O bond with larger negative charge on the oxygen atom at the 4-position are more active than the other ones. Calculated 14N and 17O EFG tensors were used to evaluate nuclear quadrupole coupling tensors, χ, and asymmetry parameters, η Q . Results showed that oxidation of a nitrogen atom at any position have significant influence on its 14N nuclear quadrupole resonance (NQR) parameters. Also, the occupancy of nitrogen lone pair plays an important role in determination of the q zz and χ values of mentioned nuclei. It is found that the η Q and χ are appropriate parameters to study the contribution of lone pair electrons of nitrogen atom in the formation of chemical bond or conjugation with the aromatic system. Finally, a linear correlation is observed between the χ(14N) and χ(17O) values in the N–O bond which may be associated with the reactivity of these compounds.  相似文献   

7.
《Chemphyschem》2006,7(1):117-130
Ultra‐wideline 27Al NMR experiments are conducted on coordination compounds with 27Al nuclei possessing immense quadrupolar interactions that result from exceptionally nonspherical coordination environments. NMR spectra are acquired using a methodology involving frequency‐stepped, piecewise acquisition of NMR spectra with Hahn‐echo or quadrupolar Carr–Purcell Meiboom–Gill (QCPMG) pulse sequences, which is applicable to any half‐integer quadrupolar nucleus with extremely broad NMR powder patterns. Despite the large breadth of these central transition powder patterns, ranging from 250 to 700 kHz, the total experimental times are an order of magnitude less than previously reported experiments on analogous complexes with smaller quadrupolar interactions. The complexes examined feature three‐ or five‐coordinate aluminum sites: trismesitylaluminum (AlMes3), tris(bis(trimethylsilyl)amino)aluminum (Al(NTMS2)3), bis[dimethyl tetrahydrofurfuryloxide aluminum] ([Me2‐Al(μ‐OTHF)]2), and bis[diethyl tetrahydrofurfuryloxide aluminum] ([Et2‐Al(μ‐OTHF)]2). We report some of the largest 27Al quadrupolar coupling constants measured to date, with values of CQ(27Al) of 48.2(1), 36.3(1), 19.9(1), and 19.6(2) MHz for AlMes3 , Al(NTMS2)3 , [Me2‐Al(μ‐OTHF)]2 , and [Et2‐Al(μ‐OTHF)]2 , respectively. X‐ray crystallographic data and theoretical (Hartree–Fock and DFT) calculations of 27Al electric field gradient (EFG) tensors are utilized to examine the relationships between the quadrupolar interactions and molecular structure; in particular, the origin of the immense quadrupolar interaction in the three‐coordinate species is studied via analyses of molecular orbitals.  相似文献   

8.
Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well‐developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear (13C, 14/15N, 19F, and 127I) solid‐state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen‐bonded co‐crystalline product materials. Single‐crystal X‐ray diffraction (XRD) structures of three novel co‐crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N+(CH2)10N+(CH3)3][2 I?]) and different para‐dihalogen‐substituted benzene moieties (i.e., p‐C6X2Y4, X=Br, I; Y=H, F) are presented. 13C and 15N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co‐crystal complexes in the solid state. Long‐range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using 14N NMR spectroscopy, with a systematic decrease in the 14N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at 127I solid‐state NMR spectroscopy experiments are presented and variable‐temperature 19F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge‐including projector augmented‐wave (GIPAW) or relativistic zeroth‐order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond.  相似文献   

9.
SCF MO calculations at the 6-31G** level of approximation are reported for 2H and 14N electric field gradients in HCN?HCN, HCN?HF, and CH3CN?HF dimers, with emphasis on the configurational dependence of these quantities in (HCN)2. In comparison with available experimental nuclear quadrupolar coupling constants, the calculated values for the monomers and dimers exhibit an accuracy of ≈ 10%, which is comparable to that of other spectroscopic parameters. The implications of hydrogen bonding for quadrupolar spin-lattice relaxation rates are briefly discussed.  相似文献   

10.
127I nuclear quadrupole resonance (NQR) spectroscopy is established as a rapid and robust method to indicate the formation of iodine–nitrogen halogen bonds in co‐crystalline powders. Once the relevant spectral frequency range has been established, diagnostic 127I NQR spectra can be acquired in seconds. The method is demonstrated for a series of co‐crystals of 1,4‐diiodobenzene. Changes in the 127I quadrupolar coupling constant (CQ) by up to 74.4 MHz correlate with the length of the C?I donor covalent bond and inversely with the I???N halogen‐bond length. The predictive power of this technique is validated on two previously unknown co‐crystalline powders prepared mechanochemically. Single‐crystal growth via co‐sublimation and structure determination by single‐crystal X‐ray diffraction cross‐validates the findings. Natural localized molecular‐orbital analyses provide insight into the origins of the quadrupolar coupling constants.  相似文献   

11.
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3N2, Mg3N2, and Ge3N4) have been studied by powder X‐ray diffraction (XRD) and 14N magic angle‐spinning (MAS) solid‐state NMR spectroscopy. For Ca3N2, Mg3N2, and Ge3N4, no 14N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and ‘high speed’ (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder‐XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their 14N MAS solid‐state NMR spectrum matches perfectly well with the number of nitrogen‐containing phases identified by powder‐XRD. The 14N MAS solid‐state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of potassium (η2‐4‐allyl‐2‐methoxyphenol)trichloridoplatinate(II), K[PtCl3(C10H12O2)], ( 1 ), starting from Zeise's salt and Ocimum sanctum L. oil has been optimized. Starting from ( 1 ), three new platinum(II) complexes, namely (η2‐4‐allyl‐2‐methoxyphenol)chlorido(2‐methylquinolin‐8‐olato‐κ2N ,O )platinum(II), ( 2 ), (η2‐4‐allyl‐2‐methoxyphenol)chlorido(5‐nitroquinolin‐8‐olato‐κ2N ,O )platinum(II), ( 3 ), and (η2‐4‐allyl‐2‐methoxyphenol)chlorido(5,7‐dichloroquinolin‐8‐olato‐κ2N ,O )platinum(II), [Pt(C9H4Cl2NO)Cl(C10H12O2)], ( 4 ), containing eugenol and a quinolin‐8‐ol derivative (R‐OQ), have been synthesized and characterized by elemental analyses, MS, IR, 1H NMR and NOESY spectra. For ( 1 ) and ( 4 ), single‐crystal X‐ray diffraction studies were also carried out. Complexes ( 2 )–( 4 ) show good inhibiting abilities on three human cancer cell lines, i.e. KB, Hep‐G2 and LU, with IC50 values of 1.42–17.8 µM . Complex ( 3 ) gives an impressively high activity against KB, Hep‐G2, LU and MCF‐7, with IC50 values of 1.42–4.91 µM , which are much lower than those of cisplatin and some other platinum(II) complexes.  相似文献   

13.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

14.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

15.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
At temperatures below 150 K, the photoactivated metastable endo‐nitrito linkage isomer [Ni(Et4dien)(η2‐O,ON)(η1‐ONO)] (Et4dien=N,N,N′,N′‐tetraethyldiethylenetriamine) can be generated with 100 % conversion from the ground state nitro‐(η1‐NO2) isomer on irradiation with 500 nm light, in the single crystal by steady‐state photocrystallographic techniques. Kinetic studies show the system is no longer metastable above 150 K, decaying back to the ground state nitro‐(η1‐NO2) arrangement over several hours at 150 K. Variable‐temperature kinetic measurements in the range of 150–160 K show that the rate of endo‐nitrito decay is highly dependent on temperature, and an activation energy of Eact=+48.6(4) kJ mol?1 is calculated for the decay process. Pseudo‐steady‐state experiments, where the crystal is continually pumped by the light source for the duration of the X‐ray experiment, show the production of a previously unobserved, exo‐nitrito‐(η1‐ONO) linkage isomer only at temperatures close to the metastable limit (ca. 140–190 K). This exo isomer is considered to be a transient excited‐state species, as it is only observed in data collected by pseudo‐steady‐state methods.  相似文献   

17.
The calculations of nitrogen‐14 nuclear quadrupole parameters, nuclear quadrupole coupling constant, χ, and asymmetry parameter, η, of L‐His were done in two distinct environments: one as a free fully optimized molecule, an isolated molecule with the geometrical parameters taken from X‐ray, and the other in the orthorhombic and monoclinic solid states. The most probable interacting molecules with the central molecule in the crystalline phase were considered in the hexameric clusters to include hydrogen‐bonding effects in the calculations. The computations were performed with PW91P86/6‐31++G** and B3LYP6‐31++G** methods using the Gaussian 98 program. The good agreement between the nitrogen‐14 quadrupole parameters of the free His and imidazole molecules with their microwave available data demonstrates that the applied level of theory and the 6‐31++G** basis set are suitable to obtain reliable electric field gradient values. In the solid state, the shifts of quadrupole coupling parameters from the monomer to the solid phase are reasonably well reproduced for the amino and imino sites of imidazole ring in a hexameric cluster. That implies the fact that the hexameric cluster worked effectively to generate the results which are compatible with the experiment. The quadrupole coupling constant values of –N+H3 group are in fair agreement with the experiment. This discrepancy is due to the absences of vibrational effects and the rotation of –N+H3 group around N–C(α) bond. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The pentane σ‐complex [Rh{Cy2P(CH2CH2)PCy2}(η22‐C5H12)][BArF4] is synthesized by a solid/gas single‐crystal to single‐crystal transformation by addition of H2 to a precursor 1,3‐pentadiene complex. Characterization by low temperature single‐crystal X‐ray diffraction (150 K) and SSNMR spectroscopy (158 K) reveals coordination through two Rh???H?C interactions in the 2,4‐positions of the linear alkane. Periodic DFT calculations and molecular dynamics on the structure in the solid state provide insight into the experimentally observed Rh???H?C interaction, the extended environment in the crystal lattice and a temperature‐dependent pentane rearrangement implicated by the SSNMR data.  相似文献   

19.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

20.
Solid‐state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β‐strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β‐sheet layers. Detection of 14N? 13C dipolar couplings may provide potentially useful additional structural constraints on β‐sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency‐selective, transfer of population in double resonance SSNMR experiment is used to detect a weak 14N? 13C dipolar coupling in amyloid‐like fibrils of the peptide H2N‐SNNFGAILSS‐COOH, which was uniformly 13C and 15N labelled across the four C‐terminal amino acids. The 14N? 13C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β‐spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号