首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unimolecular chemistry and structures of self‐assembled complexes containing multiple alkaline‐earth‐metal dications and deprotonated GlyGly ligands are investigated. Singly and doubly charged ions [Mn(GlyGly?H)n‐1]+ (n=2–4), [Mn+1(GlyGly?H)2n]2+ (n=2,4,6), and [M(GlyGly?H)GlyGly]+ were observed. The losses of 132 Da (GlyGly) and 57 Da (determined to be aminoketene) were the major dissociation pathways for singly charged ions. Doubly charged Mg2+ clusters mainly lost GlyGly, whereas those containing Ca2+ or Sr2+ also underwent charge separation. Except for charge separation, no loss of metal cations was observed. Infrared multiple photon dissociation spectra were the most consistent with the computed IR spectra for the lowest energy structures, in which deprotonation occurs at the carboxyl acid groups and all amide and carboxylate oxygen atoms are complexed to the metal cations. The N?H stretch band, observed at 3350 cm?1, is indicative of hydrogen bonding between the amine nitrogen atoms and the amide hydrogen atom. This study represents the first into large self‐assembled multimetallic complexes bound by peptide ligands.  相似文献   

2.
The formation of ions following the termination of power in a pulsed glow discharge ion source is investigated. The populations of ionized species containing sputtered atoms M+, M 2 1 :, and MAr+ are observed to maximize after the termination of discharge power. Collisions involving sputtered atoms and metastable argon atoms, Penning and associative ionization, are considered to be responsible for the formation of ions in the discharge afterpeak time regime. The domination of these ion formation processes during the afterpeak time regime is supported by the results from investigations of discharge operating parameters, metastable argon atom quenching, and ion kinetic energy distributions.  相似文献   

3.
Electron impact induced fragmentations of 2-amino-as-triazino[6,5-c]quinoline and its 2-methylamino, 2-dimethylamino and 2-benzylamino analogues have been investigated. The main primary decomposition route of both the singly and the doubly charged molecular ions is the N2 loss. For the singly charged ions the critical energy of this reaction is 110±10 kJ mol?1 and the kinetic energy release is 61±4 kJ mol?1. For the doubly charged ions these values are 90±10 kJ mol?1 and 5±2 kJ mol?1, respectively, indicating a significantly different reaction profile. The further fragmentation of [M? N2]+˙ ions consists of radical eliminations from the 2-amino group with cleavages of the α- and β-bonds. Here a significant substituent effect is eliminations found suggesting an intramolecular cyclization reaction with a substituent migration. D and 15N labelling experiments have shown a minor extent of randomization of the labelled atoms and the occurrence of other hidden skeletal rearrangements during the fragmentation.  相似文献   

4.
Electrospray ionization of dilute aqueous solutions of copper(II) chloride‐containing traces of pyridine (py) as well as ammonia permits the generation of the gaseous ions (py)2Cu+ and (py)2CuCl+, of which the latter is a formal copper(II) compound, whereas the former contains copper(I). Collision‐induced dissociation of the mass‐selected ions in an ion‐trap mass spectrometer (IT‐MS) leads to a loss of pyridine from (py)2Cu+, whereas an expulsion of atomic chlorine largely prevails for (py)2CuCl+. Theoretical studies using density functional theory predict a bond dissociation energy (BDE) of BDE[(py)2Cu+ ‐Cl] = 125 kJ mol?1, whereas the pyridine ligand is bound significantly stronger, i.e. BDE[(py)CuCl+ ‐py] = 194 kJ mol?1 and BDE[(py)Cu+ ‐py] = 242 kJ mol?1. The results are discussed with regard to the influence of the solvation on the stability of the CuI/CuII redox couple. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Electron impact ionization of carbon tetrachloride was studied as a function of electron energy from threshold up to 180 eV. A double-focusing mass spectrometer system in combination with an improved electron impact ion source was used, alleviating the problems of ion extraction from the source and the transmission of the extracted ions through the mass spectrometer system. Absolute partial ionization cross sections for the occurrence of CCl 3 + , CCl 2 + , CCl+, Cl 2 + , Cl+, C+, CCl 3 2+ , and CCl 2 2+ have been determined. In addition, the total ionization cross-section function of CCl4 is reported and compared with theoretical predictions based on a classical binary encounter approximation. Using nth root extrapolation the following ionization energies of the doubly ionized fragment ions have been derived: AE(CCl 3 2+ )=30.4±0.3 eV; and AE (CCl 2 2+ )=31.8±0.3 eV. In accordance with theoretical predictions and previous results, no stable CCl 4 + has been detected, however, metastable dissociation processes CCl 4 + CCl 3 + have been observed.  相似文献   

6.
Gas‐phase interactions between Pb2+ ions and cytosine (C) were studied by combining tandem mass spectrometry, infrared multiple photon dissociation spectroscopy, and density functional theory (DFT) calculations. Both singly and doubly charged complexes were generated by electrospray. The [Pb(C)?H]+ complex was extensively studied, and this study shows that two structures, involving the interaction of the metal with the deprotonated canonical keto‐amino tautomer of cytosine, are generated in the gas phase; the prominent structure is the bidentate form involving both the N1 and O2 electronegative centers. The DFT study also points out a significant charge transfer from the nucleobase to the low‐lying p orbitals of the metal and a strong polarization of the base upon complexation. The various potential energy surfaces explored to account for the fragmentation observed are consistent with the high abundance of the [PbNH2]+ fragment ion.  相似文献   

7.
This work is devoted to the study of an argon-hydrogen microwave plasma used as an atomic hydrogen source. Our attention has focused on the effect of the hydrogen dilution in argon on atomic hydrogen production. Diagnostics are performed either in the discharge or in the post-discharge using emission spectroscopy (actinometry) and mass spectrometry. The agreement between actinometry and mass spectrometry diagnostics proves that actinometry on the Ha(656.3 nm) and Hβ(486.1 nm) hydrogen Balmer lines can be used to measure the relative atomic hydrogen density within the microwave discharge. Results show that the atomic hydrogen density is maximum for a gas mixture corresponding to the partial pressure ratioP H 2/P Ar range between 1.5 and 2. The variation of atomic hydrogen density can be explained by a change of the dominant reactive mechanisms. At a low hydrogen partial pressure the dominant processes are the charge transfers with recombinations between Ar+ and H2 which lead to ArH+ and H 2 + ion formation. Both ions are dissociated in dissociative electron attachment processes. At a low argon partial pressure the electron temperature and the electron density decrease with increasing partial pressure ratio. The dominant mechanisms become direct reactions between charged particles (e, H+, H 2 + , and H 3 + ) or excited species H(n=2) with H2 producing H atoms.  相似文献   

8.
The fragmentation properties of singly and doubly lithiated polytetrahydrofuran (PTHF) were studied using energy-dependent collision-induced dissociation. The product ion spectrum of [PTHF + Li]+ showed the formation of three different series corresponding to product ions with hydroxyl, aldehyde and vinyl end-groups. Interestingly, besides these series, two additional, non-lithiated product ions C4H9O+ and C4H 7 + were identified in the MS/MS spectra. The MS/MS of the doubly lithiated PTHF ([PTHF + 2Li]2+) with a number of repeat units ranging from 8 to 27 showed the formation of product ions similar to those of the singly lithiated series, however, doubly lithiated product ions and product ions formed by the loss of one Li+-ion from the precursor ion also appeared with significant abundances. Analysis of the breakdown curves for the singly and doubly charged PTHF indicated that the series A ions are formed most probably together with the series B ions, while members of the series C ions appeared at significantly higher collision energies. The fragmentation properties of [PTHF + Li]+ and [PTHF + 2Li]2+ were also interpreted using the survival yield method. It was found that the collision energy/voltage necessary to obtain 50% fragmentation (CV50) was dependent linearly on the number of the repeat units, i.e., on the size, or the number of degrees of freedom (DOF).  相似文献   

9.
Aminomonosaccharides (glucosamine, galactosamine, and mannosamine) in H2O and D2O were ionized by atmospheric pressure chemical ionization (APCI) and their fragmentation patterns were investigated to identify them. All the aminomonosaccharides showed the same fragment ions but their relative ion intensities were different. Major product ions generated in H2O were [M + H]+, [M + H – H2O]+, and [2M + H – 3H2O]+, while in D2O were [MD6 + D]+, [MD6 + D – D2O]+, and [2MD6 + D – D2O – 2HDO]+. At a high fragmentor voltage above 120 V, the relative ion intensities of the major product ions showed different trends according to the aminomonosaccharides. For the use of H2O as solvent and eluent, the order of the ion intensity ratio of [M + H – H2O]+/[2M + H – 3H2O]+ was galactosamine > mannosamine > glucosamine. When using D2O as solvent and eluent, the order of the ion intensity ratios of [MD6 + D – D2O]+/[MD6 + D]+ and [2MD6 + D – D2O – 2HDO]+/[MD6 + D]+ was mannosamine > galactosamine > glucosamine. It was found that glucosamine, galactosamine, and mannosamine could be distinguished by the specific trends of the major product ion ratios in H2O and D2O. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The sulfonamide–zinc ion interaction, performing a key role in various biological contexts, is the focus of the present study, with the aim of elucidating ligation motifs in zinc complexes of sulfa drugs, namely sulfadiazine (SDZ) and sulfathiazole (STZ), in a perturbation-free environment. To this end, an approach is exploited based on mass spectrometry coupled with infrared multiple photon dissociation (IRMPD) spectroscopy backed by quantum chemical calculations. IR spectra of Zn(H2O+SDZ−H)+ and Zn(H2O+STZ−H)+ ions are consistent with a three-coordinate zinc complex, where ZnOH+ binds to the uncharged sulfonamide via N(heterocycle) and O(sulfonyl) donor atoms. Alternative prototropic isomers Zn(OH2)(SDZ−H)+ and Zn(OH2)(STZ−H)+ lie 63 and 26 kJ mol−1 higher in free energy, respectively, relative to the ground state Zn(OH)(SDZ)+ and Zn(OH)(STZ)+ species and do not contribute to any significant extent in the sampled population.  相似文献   

11.
Doubly charged ion mass spectra have been obtained for 15 n-alkane hydrocarbons. Spectra were measured using a Nier-Johnson geometry Hitachi RMU-7L mass spectrometer operated at 1.6kV accelerating voltage. Fragment ions, which resulted from C? C bond rupture and extensive H loss, dominated the spectra. Molecular ions have not been observed. The most intense ions in the doubly charged ion mass spectra of n-alkanes were [C2H4]2+, [C3H2]2+, [C4H3]2+, [C5H2]2+, [C6H6]2+, [C6H8]2+, [C7H6]2+, [C7H8]2+, [C8H6]2+ and [C8H8]2+. Appearance energies for forming the prominent doubly charged fragment ions have been measured and range from 27.5 eV to energies greater than 60eV. A geometry optimized SCF approach has been used to compute the energies and structures of prominent ions in the doubly charged mass spectra.  相似文献   

12.
Complexes of Mn2+ with deprotonated GlyGly are investigated by sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID), infrared multiple‐photon dissociation spectroscopy, ion–molecule reactions, and computational methods. Singly [Mnn(GlyGly‐H)2n?1]+ and doubly [Mnn+1(GlyGly‐H)2n]2+ charged clusters are formed from aqueous solutions of MnCl2 and GlyGly by electrospray ionization. The most intense ion produced was the singly charged [M2(GlyGly‐H)3]+ cluster. Singly charged clusters show extensive fragmentations of small neutral molecules such as water and carbon dioxide as well as dissociation pathways related to the loss of NH2CHCO and GlyGly. For the doubly charged clusters, however, loss of GlyGly is observed as the main dissociation pathway. Structure elucidation of [Mn3(GlyGly‐H)4]2+ clusters has also been done by IRMPD spectroscopy as well as DFT calculations. It is shown that the lowest energy structure of the [Mn3(GlyGly‐H)4]2+ cluster is deprotonated at all carboxylic acid groups and metal ions are coordinated with carbonyl oxygen atoms, and that all amine nitrogen atoms are hydrogen bonded to the amide hydrogen. A comparison of the calculated high‐spin (sextet) and low‐spin (quartet) state structures of [Mn3(GlyGly‐H)4]2+ is provided. IRMPD spectroscopic results are in agreement with the lowest energy high‐spin structure computed. Also, the gas‐phase reactivity of these complexes towards neutral CO and water was investigated. The parent complexes did not add any water or CO, presumably due to saturation at the metal cation. However, once some of the ligand was removed via CO2 laser IRMPD, water was seen to add to the complex. These results are consistent with high‐spin Mn2+ complexes.  相似文献   

13.
Ladders of relative alkali ion affinities of crown ethers and acyclic analogs were constructed by using the kinetic method. The adducts consisting of two different ethers bound by an alkali metal ion, (M1 + Cat + M2)+, were formed by using fast atom bombardment ionization to desorb the crown ethers and alkali metal ions, then collisionally activated to induce dissociation to (M1 + Cat)+ and (M2 + Cat)+ ions. Based on the relative abundances of the cationized ethers formed, orders of relative alkali ion affinities were assigned. The crown ethers showed higher affinities for specific sizes of metal ions, and this was attributed in part to the optimal spatial fit concept. Size selectivities were more pronounced for the smaller alkali metal ions such as Li+, Na+, and K+ than the larger ions such as Cs+ and Rb+. In general, the cyclic ethers exhibited greater alkali metal ion affinities than the corresponding acyclic analogs, although these effects were less dramatic as the size of the alkali metal ion increased.  相似文献   

14.
15.
The unimolecular dissociation reactions for [C7H7O]+ ions generated by fragmentation of a series of precursor molecules have been investigated. The metastable kinetic energy values and branching ratios associated with decarbonylation and expulsion of a molecule of formaldehyde (CH2O) from the [C7H7O]+ ions are interpreted as the hydroxybenzyl and hydroxytropylium [C7H7O]+ not interconverting to a common structure on the microsecond time-scale. In addition, similar measurements on protonated benzaldehyde, methylaryloxy and phenyl methylene ether [C7H7O]+ ions are interpreted as the dominant fraction of these decomposing ions having unique structures on the microsecond time-scale. These results are supported by experimental heats of formation calculated from ionization/appearance energy measurements. The experimental heats of formation are determined as: hydroxybenzyl ions, 735 kJ mol?1; hydroxytropylium ions, 656 kJ mol?1; phenyl methylene ether ions, 640 kJ mol?1; methylaryloxy ions 803 kJ mol?1. The combination of the results reported in this paper with previously reported experimental data for stable [C7H7O]+ ions (see Ref. 1, C. J. Cassady, B. S. Freiser and D. H. Russell, Org. Mass Spectrom.) is interpreted as evidence that the relative population of benzyl versus tropylium [C7H7O]+ ion structures from a given precursor molecule is determined by isomerization of the parent ion and not by structural equilibration of the [C7H7O]+ ion.  相似文献   

16.
Ab initio calculations at the MP2 and CCSD(T) levels of theory have disclosed the conceivable existence of fluorine‐coordinated complexes of HHeF with alkali‐metal ions and molecules M+ (M+=Li+–Cs+), M+–OH2, M+–NH3 (M+=Li+, Na+), and MX (M=Li, Na; X=F, Cl, Br). All these ligands L induce a shortening of the H? He distance and a lengthening of the He? F distance accompanied by consistent blue‐ and redshifts, respectively, of the H? He and He? F stretching modes. These structural effects are qualitatively similar to those predicted for other investigated complexes of the noble gas hydrides HNgY, but are quantitatively more pronounced. For example, the blueshifts of the H? He stretching mode are exceptionally large, ranging between around 750 and 1000 cm?1. The interactions of HHeF with the ligands investigated herein also enhance the (HHe)+F? dipole character and produce large complexation energies of around 20–60 kcal mol?1. Most of the HHeF–L complexes are indeed so stable that the three‐body dissociation of HHeF into H+He+F, exothermic by around 25–30 kcal mol?1, becomes endothermic. This effect is, however, accompanied by a strong decrease in the H? He? F bending barrier. The complexation energies, ΔE, and the bending barriers, E*, are, in particular, related by the inverse relationship E*(kcal mol?1)=6.9exp[?0.041ΔE(kcal mol?1)]. Therefore the HHeF? L complexes, which are definitely stable with respect to H+He+F+L (ΔE≈25–30 kcal mol?1), are predicted to have bending barriers of only 0.5–2 kcal mol?1. Overall, our calculations cast doubt on the conceivable stabilization of HHeF by complexation.  相似文献   

17.
2‐Mercaptopyridine N ‐oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas‐phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole‐time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′‐dithiobis(pyridine N ‐oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas‐phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox‐active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.  相似文献   

18.
Twelve 2,3′-bisindolylmethanes with various substituents were investigated using electrospray ionization quadrupole time-of-flight tandem mass spectrometry in positive ion mode. A retro-[3+2] reaction was observed in the collision-induced dissociation spectra of protonated 2,3′-bisindolylmethanes for the first time. The mechanism of retro-[3+2] reaction was concerted or stepwise. For the concerted pathway, carbon–carbon bonds of a protonated compound simultaneously cracked and the m/z 208 ion ([C15H10D2N]+) was observed with hydrogen–deuterium exchange labeling. The stepwise pathway goes through 1,3-hydrogen migration twice and the m/z 208 ion ([C15H10D2N]+) and m/z 207 ion ([C15H11DN]+) were detected with deuterium labeling. In the deuterium-labeled tandem mass spectrum for one compound, only the peak at m/z 208 was present at high abundance, suggesting that the concerted pathway is more likely. In addition, the substituents have no obvious trends on the ratios of the product intensity to the base intensity, further supporting the concerted pathway.  相似文献   

19.
The positive-ion mass spectra of twelve organic dyes used as molecular probes were measured using liquid secondary ion mass spectrometry (LSIMS). Nine of the twelve dyes were singly charged cations and the other three were doubly charged cations. The mass spectra of each of the dyes in m-nitrobenzyl alcohol contain abundant signals for the intact cation, C+ (singly charged cation dyes), or for singly-charged forms of the doubly charged cation formed by proton loss, [C2+? H+]+, or halogen counter ion attachment, [C2+ + X?]+. Fragmentation is usually minimal under the conditions used. However, the cations of five of the singly charged compounds appear to undergo charge-remote fragmentation. Collision-induced dissociation experiments on a hybrid mass spectrometer of EBqQ geometry at collision energies up to 300 eV failed to access this fragmentation pathway. In contrast to the LSIMS of many other doubly charged organic compounds, two of the dicationic dyes produced a doubly charged ion of reasonable abundance (2–20%) in the mass spectrum. When glycerol was used as a matrix solvent, the addition of the matrix modifier trifluoroacetic acid increased the abundance of C2+.  相似文献   

20.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号