首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel G-SERF-PSYCHE-TOCSY (gradient encoded selective refocusing in pure shift yielded by chirp excitation version of total correlation spectroscopy) NMR pulse scheme has been proposed, which produces TOCSY chemical shift correlations, on one hand, and scalar coupling values for the spins scalarly coupled to irradiated resonances, by showing them as doublets along the indirect dimension, on the other. Therefore, recording such an experiment, for a group of spins with overlapping chemical shifts, in organic molecules can adequately provide scalar coupling information in a G-SERF manner along the indirect dimensions, and they can be assigned to particular spin pairs. Such COSY chemical shift correlations (which appear as doublets for the scalarly coupled spins) can be readily discriminated from the TOCSY peaks (which do not show such splitting) in the G-SERF-PSYCHE-TOCSY spectrum.  相似文献   

2.
The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the 13C indirect dimension enables the distinction of similar compounds exhibiting near‐identical 1H and 13C NMR spectra. It is shown that a complete set of extremely small Δδ(1H) and Δδ(13C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.  相似文献   

3.
A frequency‐selective 1D 1H nuclear magnetic resonance (NMR) experiment for the fast and sensitive determination of chemical‐shift differences between overlapped resonances is proposed. The resulting fully homodecoupled 1H NMR resonances appear as resolved 1D singlets without their typical J(HH) coupling constant multiplet structures. The high signal dispersion that is achieved is then exploited in enantiodiscrimination studies by using chiral solvating agents.  相似文献   

4.
Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two‐field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low‐field dimension. Two‐field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.  相似文献   

5.
15个乙烯—乙烯基化合物共聚物的取代基参数   总被引:1,自引:0,他引:1  
田文晶  周子南 《分析化学》1995,23(12):1376-1380
本文应用取代基参数(SCS)方法处理了15个EV共聚物的^13CNMR谱,它们是:(1)乙烯α-烯烃共聚物,即乙烯-丙烯共聚物,乙烯-丁烯-1共聚物,乙烯4-甲基-1-戊烯共聚物,乙烯-己烯-1共聚物和乙烯-辛烯-1共聚物;(2)乙烯-含氧乙烯共聚物,即乙烯-甲基丙烯酸N,N-二甲基胺乙酯共聚物,乙烯-丙烯酸甲酯共聚物,乙烯-丙烯酸共聚物,乙烯-乙酸乙烯酯,乙烯-乙烯醇,乙烯-一氧化碳共聚物(EC  相似文献   

6.
Nuclear spin–lattice (T1) and spin–spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single‐scan measurement of a 2D T1T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real‐time. We demonstrate that, despite the tremendous speed‐up, the T1T2 correlation maps determined by the single‐scan method are in good agreement with the maps measured by the conventional method. The concept of the single‐scan T1T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.  相似文献   

7.
Metal olefin complexes that are ubiquitous intermediates in catalysis are investigated by a detailed analysis of their 13C‐NMR chemical shift tensors. This analysis allows evidencing specific electronic features, namely the olefin‐to‐metal σ‐donation and the metal‐to‐olefin π‐backdonation as proposed in the Dewar?Chatt?Duncanson model. Apart from these interactions, the chemical shift tensor analysis reveals an additional ligand‐to‐metal π‐donation of the olefin σ(C=C) orbital in systems with suitably oriented vacant d‐orbitals. This interaction which is not accounted for in the Dewar?Chatt?Duncanson model explains the reactivity of this type of metal olefin complexes towards oxidative cyclization (olefin insertion) and protonolysis.  相似文献   

8.
A sterically overcrowded lanthanide-chelating tag has been synthesized in order to investigate the influence on the obtained pseudocontact shifts and the anisotropic part of the magnetic susceptibility tensor compared to those of its predecessor DOTA-M8-(4R,4S)-SSPy. For the first time, a concise synthetic route is presented for isopropyl-substituted cyclen, the macrocyclic scaffold of the lanthanide-chelating tag, delivering the macrocycle in an overall yield of 6 % over 11 steps. The geometry of the lutetium complex has been assigned by ROESY experiments, adopting exclusively a Λ(δδδδ) conformation, and DFT calculations have confirmed a stabilization of 32.6 kJ mol−1 compared to the Δ(δδδδ) conformer. The highly rigidified lanthanide-chelating tag induces strong pseudocontact shifts of up to 6.5 ppm on ubiquitin S57 C, shows significantly improved tensor properties compared to those of its predecessor, and constitutes a highly promising starting point for the further development of lanthanide-chelating tags.  相似文献   

9.
10.
The NMR spectrum of a mixture of small molecules is a fingerprint of all of its components. Herein, we present an NMR fingerprint method that takes advantage of the fact that fractions contain simplified NMR profiles, with minimal signal overlap, to allow the identification of unique spectral patterns. The approach is exemplified in the identification of a novel natural product, iotrochotazine A ( 1 ), sourced from an Australian marine sponge Iotrochota sp. Compound 1 was used as a chemical probe in a phenotypic assay panel based on human olfactory neurosphere‐derived cells (hONS) from idiopathic Parkinson’s disease patients. Compound 1 at 1 μM was not cytotoxic but specifically affected the morphology and cellular distribution of lysosomes and early endosomes.  相似文献   

11.
The quantification of low-abundance secondary metabolites in plant extracts is an analytical problem that can be addressed by different analytical platforms, the most common being those based on chromatographic methods coupled to a high-sensitivity detection system. However, in recent years nuclear magnetic resonance (NMR) has become an analytical tool of primary choice for this type of problem because of its reliability, inherent simplicity in sample preparation, reduced analysis time, and low solvent consumption. The versatility of strategies based on quantitative NMR (qNMR), such as internal and external standards and electronic references, among others, and the need to develop validated analytical methods make it essential to compare procedures that must rigorously satisfy the analytical well-established acceptance criteria for method validation. In this work, two qNMR methods were developed for the quantification of hepatodamianol, a bioactive component of T. diffusa. The first method was based on a conventional external standard calibration, and the second one was based on the pulse length-based concentration determination (PULCON) method using the ERETIC2 module as a quantitation tool available in TopSpin software. The results show that both procedures allow the content of the analyte of interest in a complex matrix to be determined in a satisfactory way, under strict analytical criteria. In addition, ERETIC2 offers additional advantages such as a reduction in experimental time, reagent consumption, and waste generated.  相似文献   

12.
13.
We used 1H nuclear magnetic resonance pulsed‐field gradient to study the self‐diffusion of polyethylene glycol (PEG) and ions in a mixture of PEG and imidazolium bis(mandelato)borate ionic liquids (ILs) at IL concentrations from 0 to 10 wt% and temperatures from 295 to 370 K. PEG behaves as a solvent for these ILs, allowing observation of separate lines in 1H NMR spectra assigned to the cation and anion as well as to PEG. The diffusion coefficients of PEG, as well as the imidazolium cation and bis(mandelato)borate (BMB) anion, differ under all experimental conditions tested. This demonstrates that the IL in the mixture is present in at least a partially dissociated state, while the lifetimes of the associated states of the ions and ions with PEG are less than ~30 ms. Generally, increasing the concentration of the IL leads to a decrease in the diffusion coefficients of PEG and both ions. The diffusion coefficient of the anion is less than that of the cation; the molecular mass dependence of diffusion of ions can be described by the Stokes–Einstein model. NMR chemical shift alteration analysis showed that the presence of PEG changes mainly the chemical shifts of protons belonging to imidazole ring of the cation, while chemical shifts of protons of anions and PEG remain unchanged. This demonstrated that the imidazolium cation interacts mainly with PEG, which most probably occurs through the oxygen of PEG and the imidazole ring. The BMB anion does not strongly interact with PEG, but it may be indirectly affected by PEG through interaction with the cation, which directly interacts with PEG. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic nuclear polarization (DNP) is a technique to polarize the nuclear spin population. As a result of the hyperpolarization, the NMR sensitivity of the nuclei in molecules can be dramatically enhanced. Recent application of the hyperpolarization technique has led to advances in biochemical and molecular studies. A major problem is the short lifetime of the polarized nuclear spin state. Generally, in solution, the polarized nuclear spin state decays to a thermal spin equilibrium, resulting in loss of the enhanced NMR signal. This decay is correlated directly with the spin‐lattice relaxation time T1. Here we report [13C,D14]tert‐butylbenzene as a new scaffold structure for designing hyperpolarized 13C probes. Thanks to the minimized spin‐lattice relaxation (T1) pathways, its water‐soluble derivative showed a remarkably long 13C T1 value and long retention of the hyperpolarized spin state.  相似文献   

15.
We show how to record and analyze solid‐state NMR spectra of organic paramagnetic complexes with moderate hyperfine interactions using the Cu‐cyclam complex as an example. Assignment of the 13C signals was performed with the help of density functional theory (DFT) calculations. An initial assignment of the 1H signals was done by means of 1H–13C correlation spectra. The possibility of recording a dipolar HSQC spectrum with the advantage of direct 1H acquisition is discussed. Owing to the paramagnetic shifting the resolution of such paramagnetic 1H spectra is generally better than for diamagnetic solid samples, and we exploit this advantage by recording 1H–1H correlation spectra with a simple and short pulse sequence. This experiment, along with a Karplus relation, allowed for the completion of the 1H signal assignment. On the basis of these data, we measured the distances of the carbon atoms to the copper center in Cu‐cyclam by means of 13C R2 relaxation experiments combined with the electronic relaxation determined by EPR.  相似文献   

16.
Hyaluronic acid (HA) is an anionic biopolymer that is present in many tissues and can be involved in cancerous neoformations. HA can form complexes with proteins (particularly, serum albumin) in the body. However, HA structures and processes involving HA have not been extensively studied by NMR because the molecule's rigid structure makes these studies problematic. In the current work, self‐diffusion of HA and bovine serum albumin (BSA), and water in solutions was measured by 1H pulsed field gradient NMR (PFG NMR) with a focus on the HA‐BSA‐D2O systems at various concentrations of BSA and HA. It was shown that in the presence of even a small amount of HA, the self‐diffusion coefficient (SDC) of BSA decreases. To explain this fact, three hypotheses were proposed and analyzed. The first one was based on the effect of slowing down of water mobility in the presence of HA. The second hypothesis suggested an effect of mechanical collisions of BSA with HA molecules. The third hypothesized that BSA and HA molecules form a complex where BSA molecules reduced in mobility. It was shown that the third mechanism is the most likely. The state of the BSA molecules in the BSA‐HA‐D2O system corresponds to a ‘fast exchange’ condition from the NMR point of view: BSA molecules reside in the ‘free’ and ‘bound’ (with HA) states for much shorter time than the diffusion time of the PFG NMR experiment, 7 ms. The fractions of ‘bound’ BSA molecules in the BSA‐HA complex were estimated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Molecular interactions between uracil and nitrous acid (U–NA) [C4N2O2H4? NO2H] have been studied using B3LYP, B3PW91, and MP2 methods with different basis sets. The optimized geometries, harmonic vibrational frequencies, charge transfer, topological properties of electron density, nucleus‐independent chemical shift (NICS), and nuclear magnetic resonance one‐ and two‐bonds spin–spin coupling constants were calculated for U–NA complexes. In interaction between U and NA, eight cyclic complexes were obtained with two intermolecular hydrogen bonds N(C)HU…N(O) and OHNA…OU. In these complexes, uracil (U) simultaneously acts as proton acceptor and proton donor. The most stable complexes labeled, UNA1 and UNA2, are formed via NH bond of U with highest acidity and CO group of U with lowest proton affinity. There is a relationship between hydrogen bond distances and the corresponding frequency shifts. The solvent effect on complexes stability was examined using B3LYP method with the aug‐cc‐pVDZ basis set by applying the polarizable continuum model (PCM). The binding energies in the gas phase have also been compared with solvation energies computed using the PCM. Natural bond orbital analysis shows that in all complexes, the charge transfer takes place from U to NA. The results predict that the Lone Pair (LP)(O)U → σ*(O? H) and LP(N(O)NA → σ*(N(C)? H)U donor–acceptor interactions are most important interactions in these complexes. Atom in molecule analysis confirms that hydrogen bond contacts are electrostatic in nature and covalent nature of proton donor groups decreases upon complexation. The relationship between spin–spin coupling constant (1hJHY and 2hJHY) with interaction energy and electronic density at corresponding hydrogen bond critical points and H‐bonds distances are investigated. NICS used for indicating of aromaticity of U ring upon complexation. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
毛秋平  梁向晖 《化学教育》2020,41(14):47-52
酰胺醇类抗生素氟苯尼考具有抗菌谱广、用量低、细菌耐药性低及毒性小等优点,已被广泛应用于兽医实践。采用对硝基甲苯为内标,以单峰甲基信号为定量信号峰,建立了定量分析氟苯尼考和对乙酰氨基苯酚的核磁共振氢谱定量方法。该方法方便快捷,适用于氟苯尼考的质量控制分析。通过本实验使学生对于核磁共振波谱有了更深的认识,培养了学生学以致用、理论联系实际和解决实际问题的能力。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号