首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a numerical study on the formation of diffusion flame islands in a hydrogen jet lifted flame. A real size hydrogen jet lifted flame is numerically simulated by the DNS approach over a period of about 0.5 ms. The diameter of hydrogen injector is 2 mm, and the injection velocity is 680 m/s. The lifted flame is composed of a stable leading edge flame, a vigorously turbulent inner rich premixed flame, and a number of outer diffusion flame islands. The relatively long-term observation makes it possible to understand in detail the time-dependent flame behavior in rather large time scales, which are as large as the time scale of the leading edge flame unsteadiness. From the observation, the following three findings are obtained concerning the formation of diffusion flame islands. (1) A thin oxygen diffusion layer is developed along the outer boundary of the lifted flame, where the diffusion flame islands burn in a rather flat shape. (2) When a diffusion flame island comes into contact with the fluctuating inner rich premixed flame, combustion is intensified due to an increase in the hydrogen supply by molecular diffusion. This process also works for the production of the diffusion flame islands in the oxygen diffusion layer. (3) When a large unburned gas volume penetrates into the leading edge flame, the structure of the leading edge flame changes. In this transformation process, a diffusion flame island comes near the leading edge flame. The local deficiency of oxygen plays an important role in this production process.  相似文献   

2.
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881–1887] is chosen to investigate H2/N2 jet flame supported by a vitiated coflow of products of lean H2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CMC is applied. Simulations are carried out for different jet velocities and coflow temperatures (Tc). The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for Tc=1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case, the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature.  相似文献   

3.
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than “conventional” laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.  相似文献   

4.
5.
A new Lagrangian conditional moment closure (CMC) model is developed for multiple Lagrangian groups of sequentially evaporating fuel in turbulent spray combustion. Flame group interaction is taken into account as premixed combustion by the eddy breakup (EBU) model in terms of the probability of finding flame groups in the burned and the unburned state. Evaporation source terms are included in the two phase conditional transport equations, although they turn out to have negligible influence on the mean temperature field during combustion. The Lagrangian CMC model is implemented in OpenFOAM [1 H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998), pp. 620631.[Crossref] [Google Scholar]] and validated for test cases in the Engine Combustion Network (ECN) [2 Engine Combustion Network. (2011). Available at http://www.sandia.gov/ecn. [Google Scholar],3 L.M. Pickett, C.L. Genzale, G. Bruneaux, L. Malbec, L. Hermant, C. Christian, and J. Schramm, Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE technical paper 2010-01-2106 (2010). [Google Scholar]]. Similar ignition delays and lift-off lengths are predicted by the incompletely stirred reactor (ISR) and the Eulerian CMC models due to relatively uniform conditional flame structure in the domain. The improved Lagrangian CMC model shows no abrupt reaction or oscillatory behaviour with an appropriate model constant K and gives results in better agreement with measurements lying between the predictions by ISR and Lagrangian CMC without flame group interaction.  相似文献   

6.
The timing and location of autoignition can be highly sensitive to turbulent fluctuations of composition. Second-order Conditional Moment Closure (CMC) provides transport equations for conditional (co)variances in turbulent reacting flows. CMC equations accounting for compressibility and differential diffusion are analyzed using data from direct numerical simulation of an autoignitive lifted turbulent hydrogen jet flame [C.S. Yoo, R. Sankaran, J.H. Chen, Three-dimensional direct numerical simulation of turbulent lifted hydrogen/air jet flame in a heated coflow. Part 1. J. Fluid. Mech., (2008)]. At the flame base, second-order moments were required to accurately model the conditional reaction rates. However, over 80% of the second-order reaction rate component was obtainable with a small subset (16%) of the species-temperature covariances. The balance of the second-order CMC equation showed that turbulent transport across spatial composition gradients initiates generation of conditional variances.  相似文献   

7.
The laminar flamelet model in combination with joint probability density function transport equation of mixture fraction and turbulence frequency is used to simulate turbulent jet diffusion flames of hydrogen. The frequency distributions of radiative source terms are calculated for four important infrared bands of water vapor. The results show that, for the given ensemble, about 95% samples of radiative source term for each band locate within the region of ±3.0 standard deviation of the mean radiative source term. Due to the different relation between band intensity parameters and temperature for every band, the symmetrization of frequency distributions for each band is different.  相似文献   

8.
The stabilization of lifted jet diffusion flames has long been a topic of interest to combustion researchers. The flame and flow morphology, the role of partial premixing, and the effects of large scale structures on the flame can be visualized through advanced optical imaging techniques. Many of the current explanations for flame stabilization can benefit from the flow and flame information provided by laser diagnostics. Additionally, the images acquired from laser diagnostic experiments reveal features invisible to the eye and line-of-sight techniques, thereby allowing a deeper insight into flame stabilization. This paper reports visualizations of flame and flow structures from Particle Image Velocimetry (PIV), Planar Laser-Induced Fluorescence (PLIF) and Rayleigh scattering. The techniques are surveyed and the success of visualization techniques in clarifying and furthering the understanding of lifted-jet flame stabilization is discussed.  相似文献   

9.

This paper presents a numerical study of auto-ignition in simple jets of a hydrogen–nitrogen mixture issuing into a vitiated co-flowing stream. The stabilization region of these flames is complex and, depending on the flow conditions, may undergo a transition from auto-ignition to premixed flame propagation. The objective of this paper is to develop numerical indicators for identifying such behavior, first in well-known simple test cases and then in the lifted turbulent flames. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD code, FLUENT. The in-situ-adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. A simple k–ε turbulence model is used for turbulence along with a low Reynolds number model close to the solid walls of the fuel pipe.

The first indicator is based on an analysis of the species transport with respect to the budget of convection, diffusion and chemical reaction terms. This is a powerful tool for investigating aspects of turbulent combustion that would otherwise be prohibitive or impossible to examine experimentally. Reaction balanced by convection with minimal axial diffusion is taken as an indicator of auto-ignition while a diffusive–reactive balance, preceded by a convective–diffusive balanced pre-heat zone, is representative of a premixed flame. The second indicator is the relative location of the onset of creation of certain radical species such as HO2 ahead of the flame zone. The buildup of HO2 prior to the creation of H, O and OH is taken as another indicator of autoignition.

The paper first confirms the relevance of these indicators with respect to two simple test cases representing clear auto-ignition and premixed flame propagation. Three turbulent lifted flames are then investigated and the presence of auto-ignition is identified. These numerical tools are essential in providing valuable insights into the stabilization behaviour of these flames, and the demarcation between processes of auto-ignition and premixed flame propagation.  相似文献   

10.
11.
The aim of this study is to investigate numerically the effects of four vortices on the dynamic, scalar, and turbulent fields of the hydrogen jet. These vortices, which appear in the vicinities of the nozzle, are created by the vortex generators (VGs), and they are assembled with periodicity or symmetry in order, respectively, to give four vortices of the same or opposite direction. A second-order Reynolds stress model is used to investigate asymmetric turbulent jet. The results indicate that the presence of the vortex near the emission jet section noticeably enhances mixing to ensure a good combustion.  相似文献   

12.
Simulations of H2 air lifted jet flames are presented, obtained in terms of two-dimensional, first-order conditional moment closure (CMC). The unsteady CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using commercial CFD software employing a kε turbulence model. Computed lift-off heights and Favre-averaged species mole fractions are found to be very close to values obtained experimentally for a wide range of jet velocities and fuel–air mixtures. Simulations for which the initial condition is an attached flame and the jet velocity gradually increased do not result in lift-off, a result fully consistent with experimental observation and capturing the hysteresis behaviour of lifted flames. The stabilisation mechanism is explored by quantifying the balance of terms comprising the CMC in the lift-off region. In line with experimental data, it is found that the scalar dissipation rate at the stabilisation height is well below the extinction value, and that axial transport and molecular diffusion play a major role. The radial components of spatial convection and diffusion are always small, fully justifying the alternative approach of employing a cross-stream averaged CMC.  相似文献   

13.
Dynamic Mode Decomposition (DMD) is a technique that enables investigation of unsteady and dynamic phenomena by decomposing data into coherent modes with corresponding growth rates and oscillatory frequencies. Because the method identifies structures unbiased by energy, it is particularly well suited to exploring dynamic processes having phenomena that span disparate temporal and spatial scales. In turbulent combustion, DMD has been previously applied to the analysis of narrowband phenomena such as combustion instabilities utilising both experimental and computational data. In this work, DMD is used as a tool to analyse broadband turbulent combustion phenomena from a three-dimensional direct numerical simulation of a low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flame. The focus of this investigation is on defining the metric of convergence of the DMD modes for broadband phenomena when both the temporal resolution and number of data snapshots can be varied independently. The residual is identified as an effective, even if imperfect, metric for judging convergence of the DMD modes. Other metrics – specifically, the convergence of the mode eigenvalues and the decay of the amplitudes of the modes – fail to capture convergence of the modes independently but do complete the information needed to evaluate the quality of the DMD analysis.  相似文献   

14.
A turbulent ethanol spray flame is characterized through quantitative experiments using laser-based imaging techniques. The data set is used to validate a numerical code for the simulation of spray combustion. The spray burner has been designed to generate a stable flame without the use of a bluff body or a pilot flame facilitating numerical simulations. The experiments include spatially-resolved measurements of droplet sizes (Mie/LIF-dropsizing and PDA), droplet velocity (PDA), liquid-phase temperature (2-color LIF temperature imaging with Rhodamine B) and gas-phase temperature (multi-line NO-LIF temperature imaging). The measurements close to the nozzle exit are used to determine the initial conditions for numerical simulations. An Eulerian–Lagrangian model including spray flamelet modeling is applied to calculate the development of the spray. Good agreement with the experimental data is found. The experimental data set and the numerical results will be published on a website to allow other groups to evaluate their experimental and/or numerical data.  相似文献   

15.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

16.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

17.
18.
19.
The structure and stabilization mechanism of turbulent lifted non-premixed hydrocarbon flames have been investigated using combined laser imaging techniques. The techniques include Rayleigh scattering, laser induced predissociation fluorescence of OH, LIF of PAH, LIF of CH2O, and planar imaging velocimetry. The geometrical structure of multi-reaction zones and flow field at the stabilization region have been simultaneously measured in 16 hydrocarbon flames. The data reveal the existence of triple flame structure at the stabilization region of turbulent lifted flames. Increasing the jet velocity leads to an increase of the lift-off height and to a broadening of the lift-off region. Further analysis of the stabilization criterion at the lift-off height based on the premixed nature of triple-flame propagation and flow field data has been presented and discussed.  相似文献   

20.
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号