首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present review describes the salient features of inter- and intramolecular proton transfer reactions of 2-(2′-aminophenyl)-, 2-(3′-aminophenyl)-, 2-(4′-aminophenyl)-, 2-(2′-hydroxyphenyl)-, 2-(3′-hydroxyphenyl)- and 2-(4′-hydroxyphenyl)-benzimidazoles, benzoxazoles and benzothiazoles. Fluorescence quantum yield of the phototautomer produced by the intramolecular hydrogen bonding decreases on going from benzimidazole to benzoxazole to benzothiazole. This indicates that the rate of internal conversion increases in the order of compounds as mentioned above. The biprotonic phototautomerism or the presence of intermolecular proton transfer has led to the formation of (i) nonfluorescent zwitterions in case of hydroxyphenyl derivatives and the ground state precursor of this species in neutral molecules, (ii) nonfluorescent monoanions from fluorescent monoanions and (iii) nonfluorescent monocations from monocations in case of aminophenyl derivatives. In the case of 2-(4′-aminophenyl)-substituted compounds, the first protonation has always led to the formation of two types of monocations; one by protonating the amino group and the other by protonating the tertiary nitrogen atom. The former is more stable in aqueous media and the latter in non-polar media.  相似文献   

2.
Excited-state intramolecular proton transfer (ESIPT) in the 2,4,5-triarylimidazole molecules was studied by spectral-luminescent technique. For 4,5-diphenyl-(2-hydroxyphenyl)imidazoles, the ESIPT occurs in both liquid and glassy matrices at 77 K. For 4,5-diphenyl-(2-hydroxynaphthyl)imidazole, the ESIPT requires rotation of molecular fragments and is not observed at 77 K.  相似文献   

3.
A force field-inspired method based on fitted, high-quality multidimensional potential energy surfaces to follow proton transfer (PT) reactions in molecular dynamics simulations is presented. In molecular mechanics with proton transfer (MMPT) a system is partitioned into a region where proton transfer takes place and the remaining degrees of freedom which are treated with a conventional force field. The implementation of the method and applications to specific chemically and biologically relevant scenarios are presented. MMPT is developed in view of two primary areas in mind: to follow the molecular dynamics of proton transfer in the condensed phase on realistic time scales and to adapt the shape (morphing) of the potential energy surface for specific applications. MMPT is applied to PT in protonated ammonia dimer, double proton transfer in 2-pyridone-2-hydroxypyridine, and the first step of PT from a protein side-chain towards a buried [3Fe4S] cluster in ferredoxin I. Specific findings of the work include the fundamental role of the N-N vibration as the gating mode for PT in NH4+...NH3 and the qualitative understanding of PT from the protein to a metastable active-site water molecule in Ferredoxin I.  相似文献   

4.
5.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

6.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Given facile synthetic route and excellent photo stability, excited state intramolecular proton transfer (ESIPT)-active luminous materials have gained more and more attention. Here, we focus on photo-induced excitation process and the ESIPT reaction process for the novel 5-benzothiazol-2-yl-6-hydroxy-2-methyl-isoindole-1,3-dione (HPIBT) molecule. On the level of chemical geometries and infrared spectra, we verify that O─H⋯N of HPIBT should be enhanced. We find that a proton is likely to be attracted by enhanced electronic densities around N, that is, charge transfer impetus ESIPT trend. Combing potential energy curves and searching for transition state, we clarify the ultrafast ESIPT mechanism of HPIBT due to a low barrier, which legitimately explains previous experimental characteristics.  相似文献   

8.
The ground- and excited-state intramolecular proton transfer (GSIPT and ESIPT) for 8-hydroxy-4H-naphthalen-1-one (HNA), 5-hydroxynaphthoquinone (HNQ), 1-hydroxy-anthraquione (HAQ), 7-hydroxy-1-indenone (7HIN), 5,8-dihydroxynaphthoquinone (DHNQ) and 4,9-dihydroxyperylene-3,10-quinone (DHP) are studied at B3LYP/6-31G(d,p) and TD B3LYP/6-31G(d,p) level. The calculated results show that the PES of GSIPT for HNA, HNQ and HAQ exhibit a single minimum in the enol zone, while for 7-HIN, DHNQ and DHP exhibit a double minimum and a high barrier between the two minima. The barrierless ESIPT for HNA is predicted, however, the PES of ESIPT for HNQ, HAQ, 7HIN, DHNQ and DHP exhibit a high barrier in the S1 tautomerism.  相似文献   

9.
MP2 and B3LYP methods at 6‐311++G** basis set have been used to explore proton transfer in keto‐enol forms of formamide and to investigate the effect of substituent, i.e., H, F, Cl, OH, SH, and NH2 on their transition states. Additionally, the vibrational frequencies of aforementioned compounds are calculated at the same levels of theory. It is proposed that the barrier heights values in kJ/mol for F, Cl, OH, and SH substituents are significantly greater than that of the bare tautomerization reaction, implying the importance of the substituents effect on the intramolecular proton transfer. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
使用量子化学中的Hartree-Fock方法和密度泛函理论中的B3LYP方法,分别在3-21G^*和6-31G(d)水平上,计算了尿酸分子从三羰基异构体向三羟基异构体的转化。结果表明,转化过程经历了单羟基和双羟基异构体2种中间物和3种过渡态时的分子内质子转移(IPT),转移中的H原邻近的N,O和C原子形成了具有四元环结构的过渡态。随着IPT的进行,N-H键逐渐被削弱和断裂,O-H键则逐渐生成。3个反应的活化能分别为190.3kJ/mol,181.4kJ/mol和249.9kJ/mol(B3LYP/6-31G(d))。较高的活化能表明在室温下,无催化剂的IPT难以进行。  相似文献   

11.
彭亚晶  付星  蒋艳雪 《化学通报》2015,78(10):923-927
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了气相水杨酸(SA)分子的激发态氢键动力学过程。通过对水杨酸分子基态和激发态结构的优化,以及对其稳态吸收和发射光谱特性、前线分子轨道、红外振动光谱和势能曲线的计算分析,阐明水杨酸分子内质子转移可在激发态下自发地发生,导致其激发态可存在烯醇式和酮式两种异构体结构,并揭示了这种质子转移源于分子内电荷转移的激发态氢键的加强机制。  相似文献   

12.
The skeletal motions contributing to the reaction path of the ultrafast excited state intramolecular proton transfer (ESIPT) are determined directly from time resolved measurements. We investigate the ESIPT in the compounds 2-(2′-hydroxyphenyl)benzothiazole, 2-(2′-hydroxyphenyl)benzoxazole and ortho-hydroxybenzaldehyde by UV–visible pump-probe spectroscopy with 30 fs resolution. The proton transfer is observed in real time and a characteristic ‘ringing’ of the molecule in a small number of vibrational modes is found after the reaction. The results show that a bending motion of the molecular skeleton reduces the proton donor–acceptor distance and an electronic configuration change occurs at a sufficient contraction leading to the bonds of the product conformer. The process evolves as a ballistic wavepacket propagation on an adiabatic potential energy surface. The proton is shifted by the skeletal motions from the donor to the acceptor site and tunneling has not to be considered.  相似文献   

13.
To investigate the tautomerism of glycinamide that is induced by proton transfer, we present detailed theoretical studies on the reaction mechanism of both the isolated gas phase and H2O‐assisted proton transfer process of glycinamide, using density functional theory calculations by means of the B3LYP hybrid functional. Twenty‐six geometries, including 10 significant transition states, were optimized, and these geometrical parameters are discussed in detail. The relative order of the activation energy for hydrogen atom transfer of all the conformers has been systematically explored in this essay. For the amido hydrogen atom transfer process, the relative order of the activation energy is: IV < II < III < I, while in the carbonic hydrogen atom transfer process, the relative order is IV > II > III > I. Meanwhile, the most favorable structure for both the amido hydrogen atom transfer and the carbonic hydrogen atom transfer has been found. The involvement of the water molecule not only can stabilize the transition states and the ground states, but can also reduce the activation energy greatly. The superior catalytic effect of H2O has been discussed in detail. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

14.
15.
Nonradiative decay pathways associated with vibronically coupled S1(ππ*)–S2(*) potential energy surfaces of 3- and 5-hydroxychromones are investigated by employing the linear vibronic coupling approach. The presence of a conical intersection close to the Franck–Condon point is identified based on the critical examination of computed energetics and structural parameters of stationary points. We show that very minimal displacements of relevant atoms of intramolecular proton transfer geometry are adequate to drive the molecule toward the conical intersection nuclear configuration. The evolving wavepacket on S1(ππ*) bifurcates at the conical intersection: a part of the wavepacket moves to S2(*) within a few femtoseconds while the other decays to S1 minimum. Our findings indicate the possibility of forming the proton transfer tautomer product via S2(*), competing with the traditional pathway occurring on S1(ππ*).  相似文献   

16.
首次利用量子化学半经验AM1方法和从头算HF/6-31G方法对一种新型的苝醌类光? 艏?PQP)-菌生素(HMB)的结构及其分子内质子传递(IPT)进行了理论计算研究,并? 捎弥鸩皆黾硬嗔吹姆椒ㄉ杓屏艘幌盗心P突衔镆钥悸歉鞑嗔炊訦MBIPT的影响,? 峁推p醌(PQ)的IPT作了对比。同于HMB只有一个分子内氢键,此项研究对解释PQP的光敏活性有十分重要的意义。本研究主要结论:(1)基态时HMB的IPT势垒只有10.0180kJ/mol(反式)和37.9819kJ/mol(顺式),分子中存在着快速的IPT。(2)侧链对HMB的IPT势垒影响较小,IPT主要受它的大共轭结构和共振模式的影响。(3)过渡态时质子的电荷增加,质子传递势垒与它的电荷变化成线性关系,此关系可推广到其它质子传递体系。(4)HMB的IPT势垒和IPT过程中羟基氧氢键以及氢键的键长变化均成较好的线性关系。(5)虽然只有一个IPT模式,HMB的IPT以及共振模式仍然和PQ十分相似,这是HMB保持光敏活性的基础。  相似文献   

17.
卢涛  李象远 《化学学报》2008,66(4):433-436
用CHARMM程序以细菌紫红质1R84晶体为模型, 模拟了在等温定容条件下细菌紫红质在1 ps过程中的变化, 分析了与质子传递相关的ASP85, ASP212和水分子与视黄醛间氢键的结构变化情况. 考虑到氨基酸残基和席夫碱质子的不同距离, 考察了EC和PC两种结构的变化情况, 探讨了紫红质中质子传递的可能途径. 模拟结果表明1R84中可能的质子连续传递的机理是质子由席夫碱向水传递, 再由水向ASP85传递. 发现Asp212在模拟过程中保持EC结构, 这样可能更有利于顺序质子传递.  相似文献   

18.
Semiempirical SCF-MO studies of tautomerism in alloxan preclude the possibility of direct proton transfer in the gas phase due to the strain in the four-centred transition state, in which the proton being transferred is forced to come close to the positively charged carbon atom at the opposite corner of the four-membered ring. However, in aqueous solution, the activation barrier reduces appreciably, not only due to reduction in strain, but also due to charge separation in the transition state, which is stabilized due to ionic resonance. The N-H bond is almost broken, while the O-H bond is only partially formed in the transition state. The other stabilizing effect in aqueous solution is due to bulk solvent dielectric effects, which stabilize the transition state to a greater extent due to its higher dipole moment. Although the transition states for proton transfer to the neighbouring oxygen atoms on either side have comparable energies, as the mechanisms of proton transfer leading to the formation of the 2-hydroxy and 4-hydroxy tautomers are similar, bulk solvent effects are larger in the latter due to the higher dipole moment of the transition state. The reason is the almost complete separation of the two entities, i.e. the alloxan anion and the hydronium ion in the latter case, indicating that in this case a dissociative mechanism of the kind encountered in acid-base equilibria is operating.  相似文献   

19.
The twenty-one-dimensional Hamiltonian of malonaldehyde molecule and a number of its isotopomers (H/D, 13C/12C) was reconstructed in the low-energy region (<3000 cm–1). Parameters of the Hamiltonian were obtained from quantum-chemical calculations of the energies, equilibrium geometries, and eigenvectors and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and transition state. Despite substantial variation of the barrier height calculated using different quantum-chemical methods (from 2.8 to 10.3 kcal mol–1), the corresponding potential energy surfaces can be matched with high accuracy by scaling only one parameter (the semiclassical parameter , which defines the scales of potential, energy, and action). Scaling invariance allows optimization of the Hamiltonian in such a way that the calculated ground-state tunneling splitting coincides with the experimental value. The corresponding potential barrier height is estimated at 4.34±0.4 kcal mol–1. The quantum dynamics problem was solved using the perturbative instanton approach without reducing the number of degrees of freedom. The role of all transverse vibrations in proton tunneling is characterized. Vibration-tunneling spectrum is calculated for the ground state and low-lying excited states and mode-specific isotope effects are predicted.  相似文献   

20.
We present Hydrogen Dynamics (HYDYN), a method that allows explicit proton transfer in classical force field molecular dynamics simulations at thermodynamic equilibrium. HYDYN reproduces the characteristic properties of the excess proton in water, from the special pair dance, to the continuous fluctuation between the limiting Eigen and Zundel complexes, and the water reorientation beyond the first solvation layer. Advantages of HYDYN with respect to existing methods are computational efficiency, microscopic reversibility, and easy parameterization for any force field. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号