首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The modulation of bacterial communication to potentiate the effect of existing antimicrobial drugs is a promising alternative to the development of novel antibiotics. In the present study, we synthesized 58 analogues of hamamelitannin (HAM), a quorum sensing inhibitor and antimicrobial potentiator. These efforts resulted in the identification of an analogue that increases the susceptibility of Staphylococcus aureus towards antibiotics in vitro, in Caenorhabditis elegans, and in a mouse mammary gland infection model, without showing cytotoxicity.  相似文献   

2.
The total synthesis of ganglioside 2, an analogue of the ganglioside Hp-s1 (1) which displays neuritogenic activity toward the rat pheochromocytoma cell line PC-12 cell in the presence of nerve growth factor (NGF) with an effect (34.0%) greater than that of the mammalian ganglioside GM 1 (25.4%), was accomplished by applying a chemoselective-activation glycosylation strategy. Moreover, we also demonstrate that the synthesized ganglioside 2 exhibited neuritogenic activity toward the human neuroblastoma cell line SH-SY5Y without the presence of NGF.  相似文献   

3.
The improper use of antibiotics has led to the development of bacterial resistance, resulting in fewer antibiotics for many bacterial infections. Especially, the drug resistance of hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is distinctly serious. This research designed and synthesized two series of 3-substituted ocotillol derivatives in order to improve their anti-HA-MRSA potency and synergistic antibacterial activity. Among the synthesized compounds, 20–31 showed minimum inhibitory concentration (MIC) values of 1–64 µg/mL in vitro against HA-MRSA 18–19, 18–20, and S. aureus ATCC29213. Compound 21 showed the best antibacterial activity, with an MIC of 1 μg/mL and had synergistic inhibitory effects. The fractional inhibitory concentration index (FICI) value was 0.375, when combined with chloramphenicol (CHL) or kanamycin (KAN). The structure–activity relationships (SARs) of ocotillol-type derivatives were also summarized. Compound 21 has the potential to be developed as a novel antibacterial agent or potentiator against HA-MRSA.  相似文献   

4.
Rat pheochromocytoma (PC12) cells have been used to investigate neurite outgrowth. Nerve growth factor (NGF) has been well known to induce neurite outgrowth from PC12 cells. RhoA belongs to Ras-related small GTP-binding proteins, which regulate a variety of cellular processes, including cell morphology alteration, actin dynamics, and cell migration. NGF suppressed GTP-RhoA levels after 12 h in PC12 cells and was consistently required for a long time to induce neurite outgrowth. Constitutively active (CA)-RhoA suppressed neurite outgrowth from PC12 cells in response to NGF, whereas dominant-negative (DN)-RhoA stimulated it, suggesting that RhoA inactivation is essential for neurite outgrowth. Here, we investigated the mechanism of RhoA inactivation. DN-p190RhoGAP abrogated neurite outgrowth, whereas wild-type (WT)-p190RhoGAP and WT-Src synergistically stimulated it along with accelerating RhoA inactivation, suggesting that p190RhoGAP, which can be activated by Src, is a major component in inhibiting RhoA in response to NGF in PC12 cells. Contrary to RhoA, Rap1 was activated by NGF, and DN-Rap1 suppressed neurite outgrowth, suggesting that Rap1 is also essential for neurite outgrowth. RhoA was co-immunoprecipitated with Rap1, suggesting that Rap1 interacts with RhoA. Furthermore, a DN-Rap-dependent RhoGAP (ARAP3) prevented RhoA inactivation, abolishing neurite formation from PC12 cells in response to NGF. These results suggest that NGF activates Rap1, which, in turn, up-regulates ARAP3 leading to RhoA inactivation and neurite outgrowth from PC12 cells. Taken together, p190RhoGAP and ARAP3 seem to be two main factors inhibiting RhoA activity during neurite outgrowth in PC12 cells in response to NGF.  相似文献   

5.
Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (P<0.001). Preincubation of the myotubes with either the photosensitizers 5-amino-levulinic acid (5-ALA), or with hematoporphyrin (Hp) enhanced the elevation of cytosolic calcium (P<0.001) after helium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.  相似文献   

6.
This study was aimed at investigating emulsion electrospinning to prepare biodegradable fibrous mats with encapsulation of human-nerve growth factor (NGF). One of the best methods for fabricating a bio-functional tissue engineering scaffold is to load bioactive agent into the scaffold. In this work, the feasibility of incorporating NGF into poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning has been studied. The release behavior of encapsulated bovine serum albumin (BSA) was investigated. The bioactivity of NGF released from fibrous mats was verified by testing the neurite outgrowth of rat pheochromocytoma cells (PC12). Furthermore, the process of fiber forming during emulsion electrospinning was discussed. The results demonstrate that emulsion electrospun fibers can successfully encapsulate proteins and release them in a sustained manner. The bioactivity of NGF released from emulsion electrospun fibers was confirmed by PC12 bioassays.  相似文献   

7.
The effects of nerve growth factor (NGF) and saponins isolated from Panax ginseng C.A. Mayer on the survival of chick and rat embryonic cerebral cortex neurons were examined. Ginsenoside Rg1 (GRg1) exerted a survival-promoting effect on both chick and rat cerebral cortex neurons in cell cultures. Ginsenoside Rb1 (GRb1) also had an effect in the rat and displayed some influence in the chick. NGF alone exerted no effect on both neurons, although it did potentiate the GRb1 effect on chick embryonic cerebral cortex neurons, but did not alter the GRb1 effect on rat embryonic cerebral cortex neurons. NGF did not alter the survival-promoting effect of GRg1 on either chick or rat embryonic cerebral cortex neurons. The other saponins alone or with NGF exerted no effect on the survival of cerebral cortex neurons in either the chick or rat.  相似文献   

8.
一种从蛇毒中纯化神经生长因子的新工艺   总被引:2,自引:0,他引:2  
吴鹏  杨晓燕  边六交 《色谱》2004,22(1):1-4
为了能从中华眼镜蛇蛇毒中简单快速地分离纯化神经生长因子(一种治疗各种神经性损伤和神经退行疾病的药物,简称NGF),采用不同的色谱柱联用的方式对NGF的纯化工艺进行了研究。结果表明,采用DEAE Sepharose F.F.和Sephadex G 50二步柱色谱工艺可以从蛇毒中快速分离得到神经生长因子。经十二烷基硫酸钠聚丙烯酰胺凝胶电泳和反相高效液相色谱分析, 证明所得到的NGF为单一组分,相对分子质量约为 29 000。对8 d龄鸡胚背根神经节采用体外培养法,结果证明,所得NGF具有明显的促进神经纤维  相似文献   

9.
Nerve growth factor (NGF) is known to regulate both cancer cell survival and death signaling, depending on the cellular circumstances, in various cell types. In this study, we showed that NGF strongly upregulated the protein level of tropomyosin-related kinase A (TrkA) in TrkA-inducible SK-N-MC cancer cells, resulting in increases in various TrkA-dependent cellular processes, including the phosphorylation of c-Jun N-terminal kinase (JNK) and caspase-8 cleavage. In addition, NGF enhanced TrkA-induced morphological changes and cell death, and this effect was significantly suppressed by the JNK inhibitor SP600125, but not by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. To investigate novel targets associated with the enhancement of TrkA-induced SK-N-MC cell death caused by NGF, we performed Coomassie Brilliant Blue staining and two-dimensional (2D) proteomic analysis in TrkA-inducible SK-N-MC cells. We identified 31 protein spots that were either greatly upregulated or downregulated by TrkA during NGF treatment using matrix-associated laser desorption/ionization time of flight/time of flight mass spectrometry, and we analyzed the effects of SP600125 and wortmannin on the spots. Interestingly, 11 protein spots, including heterogeneous nuclear ribonucleoprotein K (hnRNP K), lamin B1 and TAR DNA-binding protein (TDP43), were significantly influenced by SP600125, but not by wortmannin. Moreover, the NGF/TrkA-dependent inhibition of cell viability was significantly enhanced by knockdown of hnRNP K using small interfering RNA, demonstrating that hnRNP K is a novel target associated with the regulation of TrkA-dependent SK-N-MC cancer cell death enhanced by NGF.  相似文献   

10.
The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11 , derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly, triazole analogues derived from potentiator VX-770 displayed no potentiation of F508del, G551D, or WT-CFTR in cellular Ussing chamber assays. However, patch clamp analysis revealed that triazole 60 potentiates WT-CFTR similarly to VX-770. The efficacy of 60 in the cell-free patch clamp experiment suggests that the loss of activity in the cellular assay could be due to the inability of VX-770 triazole derivatives to reach the CFTR binding site. Moreover, in addition to the negative impact on biological activity, triazoles in both structural classes displayed decreased metabolic stability in human microsomes relative to the analogous amides. In contrast to the many studies that demonstrate the advantages of using the 1,2,3-triazole, these findings highlight the negative impacts that can arise from replacement of the amide with the triazole and suggest that caution is warranted when considering use of the 1,2,3-triazole as an amide bioisostere.  相似文献   

11.
In order to study the relationship between spinal cord injury and the change of nerve growth factor (NGF), an analytical method for NGF by capillary electrophoresis-based immunoassay (CEIA) with laser-induced fluorescence (LIF) was developed. Having been dissolved in phosphate buffer solution and concentrated with vacuum freeze-drying, NGF in spinal cord of rat was allowed to react with NGF monoclonal antibody labeled with fluorescence isothiocyanate (FITC). Then the immuno-complex, FITC-labeled anti-NGF and FITC were separated and determined by LIF-CEIA using Kiton red as the internal standard. The linear range of the method was 2?C30?ng?mL?1 and the limit of detection was 0.35?ng?mL?1. The relative standard derivations for relative migration time and relative fluorescence intensity ratio were 7.98% and 6.52%, respectively. The contents of NGF from spinal cord of rat were determined by both the proposed method and Western blotting. The results with the two methods agreed well. The spiked recoveries of the samples were 88.5?C116.3%. The proposed method was rapid, precise and inexpensive.  相似文献   

12.
《中国化学快报》2020,31(5):1141-1146
Non-nerve cell-derived extracellular matrix (ECM) was coated on the aligned porous polypyrrole-poly(l-lactide) (PPy-PLLA) fiber-films with the conductivity of ∼12 mS/m via L929 cells culture and lysing, resulting in ∼10% increase of PC12 cells attachment and ∼26 μm increase of neurites length. The neurite length of ∼149 μm in EGF/NGF group (optimal concentration radio of 12.5/50 (ng/mL)) on aligned and ECM-conjugated fiber-films was significantly larger than ∼94 μm in only NGF group (50 ng/mL), confirming the synergy of EGF, NGF and aligned ECM-conjuaged PPy-PLLA fibers. When differentiated PC12 cells were exerted electrical stimulation (ES) of 100 mV/cm for 4 h/day in 2 day through ECM-PPy-PLLA fiber-films, their neurite length reached to ∼251 μm, significantly larger than ∼149 μm of group without ES, due to the higer expression of related neural proteins in ES group. A simple mechanism was proposed to analyze synergistical effect of ECM, EGF, NGF on axons adhesion and elongation along the aligned ECM-coated fibers under ES condition.  相似文献   

13.
Neurotrophins protect neurons against excitotoxicity; however the signaling mechanisms for this protection remain to be fully elucidated. Here we report that activation of the phosphatidyl inositol 3 kinase (PI3K)/Akt pathway is critical for protection of hippocampal cells from staurosporine (STS) induced apoptosis, characterized by nuclear condensation and activation of the caspase cascade. Both nerve growth factor (NGF) and brain-derived growth factor (BDNF) prevent STS-induced apoptotic morphology and caspase-3 activity by upregulating phosphorylation of the tropomyosin receptor kinase (Trk) receptor. Inhibition of Trk receptor by K252a altered the neuroprotective effect of both NGF and BDNF whereas inhibition of the p75 neurotrophin receptor (p75NTR) had no effect. Impairment of the PI3K/Akt pathway or overexpression of dominant negative (DN)-Akt abolished the protective effect of both neurotrophins, while active Akt prevented cell death. Moreover, knockdown of Akt by si-RNA was able to block the survival effect of both NGF and BDNF. Thus, the survival action of NGF and BDNF against STS-induced neurotoxicity was mediated by the activation of PI3K/Akt signaling through the Trk receptor.  相似文献   

14.
There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.  相似文献   

15.
A new iridoid glycoside, 10-isovaleryl kanokoside C (1), and a new sesquiterpene (2) together with two known compounds (3, 4) were isolated from the rhizomes and roots of Valeriana fauriei. Their structures were elucidated on the basis of spectroscopic analysis. Compounds 2 and 4 showed enhancing activity of nerve growth factor (NGF)-induced neurite outgrowth in PC 12D cells.  相似文献   

16.
A highly purified electrophoreticaly homogeneous protein with a NGF activity of 10·105 BU/mg of protein have been isolated from the venom of the Central Asian cobra by gel-filtration and ion-exchange chromatography followed by preparative isolectric focusing in a thin layer of Sephadex. It has been shown that the NGF isolated is characterized by a molecular weight in the range of 20–30 kD and a pI value of about 7.0.Institute of Biochemistry, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii. No. 4, pp. 546–551, July–August, 1985.  相似文献   

17.
When single-cell suspensions prepared from embryonic day 8 (E8) chick sensory ganglia are incubated with nerve growth factor (NGF), anti-NGF antiserum, and complement, an NGF-dependent cytotoxic kill of 20 (+/- 3)% of the ganglia cells is observed. This percentage is increased by a factor of two when only the neuronal cells are tested. No kill is observed on the nonneuronal cell population representing 50% of the ganglia dissociate. When E8 sensory ganglia cells are cultured in the presence of NGF following cytotoxic kill, the large, phase-bright NGF-reponsive neurons are missing from the culture. These results indicate that the cells recognized in the cytotoxicity assay have to carry NGF-binding sites of type I, which is the one with the higher affinity of the two types of NGF-binding sites (I and II) present on sensory ganglia cells. This conclusion is further supported by the following data: a) half maximal cytotoxicity is reached already at a concentration of NGF which is below the KD of binding site I; b) a washing step which removes all NGF bound to type II receptors while leaving a high percentage of type I receptors occupied has no effect on the percentage of ganglia cells killed. Using the cytotoxicity assay the presence of high-affinity binding sites of type I can be demonstrated on sensory ganglia cells from E8 chick embryos but not from E4 embryos and not on liver and heart cells from E8 embryos. Further, type I receptor-bearing cells were detectable in the brain using this assay. At E8, NGF receptors could be detected on cells of the forebrain and the tectum but not on brain stem cells. Cytotoxic kill of forebrain cells was found to be especially high at E8 and E9, and decreased by E10.  相似文献   

18.
Many biochemical pathways involving nerve growth factor (NGF), a neurotrophin with copper(II) binding abilities, are regulated by the ubiquitin (Ub) proteasome system. However, whether NGF binds Ub and the role played by copper(II) ions in modulating their interactions have not yet been investigated. Herein NMR spectroscopy, circular dichroism, ESI‐MS, and titration calorimetry are employed to characterize the interactions of NGF with Ub. NGF1–14, which is a short model peptide encompassing the first 14 N‐terminal residues of NGF, binds the copper‐binding regions of Ub (KD=8.6 10?5 m ). Moreover, the peptide undergoes a random coil–polyproline type II helix structural conversion upon binding to Ub. Notably, copper(II) ions inhibit NGF1–14/Ub interactions. Further experiments performed with the full‐length NGF confirmed the existence of a copper(II)‐dependent association between Ub and NGF and indicated that the N‐terminal domain of NGF was a valuable paradigm that recapitulated many traits of the full‐length protein.  相似文献   

19.
A highly purified electrophoreticaly homogeneous protein with a NGF activity of 10·105 BU/mg of protein have been isolated from the venom of the Central Asian cobra by gel-filtration and ion-exchange chromatography followed by preparative isolectric focusing in a thin layer of Sephadex. It has been shown that the NGF isolated is characterized by a molecular weight in the range of 20–30 kD and a pI value of about 7.0.  相似文献   

20.
Bian  Liujiao  Ji  Xu  Hu  Wei 《Chromatographia》2014,77(11):793-802

The urea-induced dissociation of nerve growth factor from venom of Chinese cobra (cNGF) was studied by intrinsic fluorescence emission spectra, SEC, urea-gradient polyacrylamide gel electrophoresis, assays of biological activity and thermodynamic parameters. The results showed that when urea concentration was lower than or equal to 4.0 mol L−1 or higher than or equal to 8.0 mol L−1, cNGF existed only in native homodimer form or monomer form, respectively; whereas when urea concentration was higher than 4.0 mol L−1 and lower than 8.0 mol L−1, they existed simultaneously in the native homodimer and monomer forms and the former decreased, while the latter increased with the increase in urea concentration. Based on the association–dissociation equilibrium between cNGF and urea molecules, an equation, which includes two characteristic dissociation parameters K and ∆m, was presented to describe the urea-induced dissociation process of cNGF. As the reaction temperature increased from 15 to 35 °C, positive enthalpy and entropy changes were observed, and the parameter K increased from 2.72 × 10−13 to 5.18 × 10−12 (L mol−1), while the parameters ∆m and ∆G, respectively, decreased from 10.18 to 8.42 and from −10.27 to −18.67 (kJ mol−1), which means that the urea-induced dissociation of cNGF was spontaneous and entropy-driven and the higher temperature was favorable for the dissociation process. Using the procedures and equations mentioned in the paper, the urea-induced dissociation of cNGF is first comprehensively described. Furthermore, this work presents a useful method for people to study the dissociation of dimer or multimer proteins induced by denaturants, inducers, pH, etc.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号