首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential energy surfaces of the CF(3)CH═CH(2) + OH reaction have been investigated at the BMC-CCSD level based on the geometric parameters optimized at the MP2/6-311++G(d,p) level. Various possible H (or F)-abstraction and addition/elimination pathways are considered. Temperature- and pressure-dependent rate constants have been determined using Rice-Ramsperger-Kassel-Marcus theory with tunneling correction. It is shown that IM1 (CF(3)CHCH(2)OH) and IM2 (CF(3)CHOHCH(2)) formed by collisional stabilization are major products at 100 Torr pressure of Ar and in the temperature range of T < 700 K (at P = 700 Torr with N(2) as bath gas, T ≤ 900 K), whereas CH(2)═CHOH and CF(3) produced by the addition/elimination pathway are the dominant end products at 700-2000 K. The production of CF(3)CHCH and CF(3)CCH(2) produced by hydrogen abstractions become important at T ≥ 2000 K. The calculated results are in good agreement with available experimental data. The present theoretical study is helpful for the understanding the characteristics of the reaction of CF(3)CH═CH(2) + OH.  相似文献   

2.
The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.  相似文献   

3.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

4.
CH3(2A′)自由基与臭氧反应机理的量子化学研究   总被引:2,自引:0,他引:2  
用量子化学UMP2方法,在6-311++G**基组水平上研究了CH3(2A′)自由基与臭氧反应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的几何构型,在UQCISD(T)/6-311++G**水平上计算了它们的能量;并对它们进行了振动分析,以确定中间体和过渡态的真实性;同时应用经典过渡态理论计算了反应的速率常数,并与实验值进行了比较, CH3自由基与臭氧反应速率常数的理论计算结果为: 4.73×10-14 cm3•molecule-1•s-1,与实验报导的结果(k=2.52×10-14 cm3•molecule-1•s-1)很接近,同时发现CH3(2A′)自由基与O3的反应是强放热反应.  相似文献   

5.
The mechanisms of the reactions: CH(3)CFCl(2) + Cl (R1) and CH(3)CF(2)Cl + Cl (R2) are studied over a wide temperature range (200-3000 K) using the dual-level direct dynamics method. The minimum energy path calculation is carried out at the MP2/6-311G(d,p) and B3LYP/6-311G(d,p) levels, and energetic information is further refined by the G3(MP2) theory. The H-abstraction from the out-of-plane for (R1) is the major reaction channel, while the in-plane H-abstraction is the predominant route of (R2). The canonical variational transition-state theory (CVT) with the small-curvature tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions and hydrogenation reactions as working chemical reactions, the standard enthalpies of formation for CH(3)CFCl(2), CH(3)CF(2)Cl, CH(2)CFCl(2), and CH(2)CF(2)Cl are evaluated at the CCSD(T)/6-311 + G(3df,2p)//MP2/6-311G(d,p) level of theory. The results indicate that the substitution of fluorine atom for the chlorine atom leads to a decrease in the C-H bond reactivity with a small increase in reaction enthalpies. Also, for all reaction pathways the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants.  相似文献   

6.
A detailed computational study is performed on the singlet potential energy surface (PES) for possible isomerization and dissociation reactions of CH(3)CHO at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) levels. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the PES for a given chemical composition. Fourteen isomers inclusive of 11 single-molecules and three "non-stabilized" oxygen-based ylides, 5 energetically favored complexes, and 79 interconversion transition states have been found on the singlet PES. Four lowest lying isomers with thermodynamic stability are also kinetically stable with respect to metastable intermediates. It was revealed that vinyl alcohols, which could be generated by the tautomerization of acetaldehyde, could undergo dissociation to form acetylene and water. In addition, recombination channels between some fragments, such as H(2)CO + (1)CH(2) and (1)CHOH + (1)CH(2), are energetically accessible via collision complex or oxygen-based ylides. Most of available unimolecular decompositions are found to be responsible for favorable hydrogen abstraction processes.  相似文献   

7.
A theoretical study of the mechanism and the kinetics for the hydrogen abstraction reaction of the biradical hydroperoxy radical has been presented at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) level of theory. Our theoretical calculations suppose a stepwise mechanism involving the formation of a postreactant complex in the triplet and singlet entrance channels. Four transition states of the six‐membered chain complexes (3TS1 and 1TS1) and six‐membered ring complexes (3TS2 and 1TS2) are located at the high dual level CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) method. The rate constants of Path 1 ~ Path 4 at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G (d,p) level are calculated by means of the conventional transition state theory (TST) and canonical variational TST without and with small‐curvature tunneling (SCT) correction within the temperature range of 200–2,500 K. The calculated results show that the triplet channel is the dominating reaction channel and Path 2 is found to be the most favorable pathway. The rate constants of Path 2 are in good agreement with the experimental values at the experimentally measured temperatures. Moreover, the variational effect is not obvious in the low temperature range but is not neglectable in the high temperature range. The SCT plays an important role particularly in the low temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
Stationary points of paths for H atom abstraction from CH(3)NHNH(2) (monomethylhydrazine) by NO(2) were characterized via CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) and CCSD(T)/6-311+G(2df,p)//CCSD/6-31+G(d,p) calculations. Five transition states connecting CH(3)NHNH(2)-NO(2) complexes to a manifold that includes CH(3)NHNH-HONO, CH(3)NNH(2)-HONO, CH(3)NNH(2)-HNO(2), and CH(3)NHNH-HNO(2) complexes were identified. Transition states that connect CH(3)NHNH-HONO, CH(3)NNH(2)-HONO, CH(3)NNH(2)-HNO(2), and CH(3)NHNH-HNO(2) complexes to each other via H atom exchange and/or hindered internal rotation were also identified. The high point in the minimum energy path from the CH(3)NHNH(2) + NO(2) reactant asymptote to the manifold of HONO-containing product states is a transition state 8.6 kcal/mol above the reactant asymptote. From a kinetics standpoint, this value is considerably higher than the 5.9 kcal/mol value that was estimated for it based on theoretical results for H atom abstraction from NH(3) by NO(2).  相似文献   

9.
Rate constants for the reactions of OH radicals with dimethyl phosphonate [DMHP, (CH(3)O)(2)P(O)H] and dimethyl methylphosphonate [DMMP, (CH(3)O)(2)P(O)CH(3)] have been calculated by ab initio structural methods and semiclassical dynamics modeling and compared with experimental measurements over the temperature range 250-350 K. The structure and energetics of reactants and transition structures are determined for all hydrogen atom abstraction pathways that initiate the atmospheric oxidation mechanism. Structures are obtained at the CCSD/6-31++G** level of chemical theory, and the height of the activation barrier is determined by a variant of the G2MP2 method. A Transfer Hamiltonian is used to compute the minimum energy path in the neighborhood of the transition state (TS). This calculation provides information about the curvature of the potential energy surface in the neighborhood of the TS, as well as the internal forces that are needed by the semiclassical flux-flux autocorrelation function (SCFFAF) dynamics model used to compute the temperature-dependent reaction rate constants for the various possible abstraction pathways. The computed temperature-dependent rate curves frequently lie within the experimental error bars.  相似文献   

10.
The multiple channel reaction H + CH(3)CH(2)Cl --> products has been studied by the ab initio direct dynamics method. The potential energy surface information is calculated at the MP2/6-311G(d,p) level of theory. The energies along the minimum energy path are further improved by single-point energy calculations at the PMP4(SDTQ)/6-311+G(3df,2p) level of theory. For the reaction, four reaction channels (one chlorine abstraction, one alpha-hydrogen abstraction, and two beta-hydrogen abstractions) have been identified. The rate constants for each reaction channel are calculated by using canonical variational transition state theory incorporating the small-curvature tunneling correction in the temperature range 298-5000 K. The total rate constants, which are calculated from the sum of the individual rate constants, are in good agreement with the experimental data. The calculated temperature dependence of the branching fractions indicates that for the title reaction, H-abstraction reaction is the major reaction channel in the whole temperature range 298-5000 K.  相似文献   

11.
An extensive quantum chemical study of the potential energy surface (PES) for all possible isomerization and dissociation reactions of CH3CN is reported at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/ cc-pVTZ//B3LYP/6-311++G(d,p) levels of theory. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the potential energy surface for a given chemical composition in combination with a downhill-walk algorithm. Seventeen equilibrium structures and 59 interconversion transition states have been found on the singlet PES. The four lowest lying isomers with thermodynamic stability are also kinetically stable with the lowest conversion barriers of 49.69-101.53 kcal/mol at the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) level, whereas three-membered-ring isomers c-CH2NCH, c-CH2CNH, and c-CHNHCH can be considered as metastable intermediates which can further convert into the low-lying chain-like isomers and higher lying acyclic isomers with the lowest conversion energies of 21.70-59.99 kcal/mol. Thirteen available dissociation channels depending on the different initial isomers have been identified. A prediction can be made for the possible mechanism explaining the migration of a hydrogen atom in competition with the CC bond dissociation. Several new energetically accessible pathways are found to be responsible for the migration of the hydrogen atom. The present results demonstrate that the SHS method is an efficient and powerful technique for global mapping of reaction pathways on PESs.  相似文献   

12.
在B3LYP/6-311++G(d,p)水平上研究了HOSO+NO的反应机理. 优化得到了反应势能面上各驻点的几何构型, 通过内禀反应坐标(IRC)确认了反应物、中间体、过渡态和产物的相关性. 在CCSD(T)/6-311++G(d,p)水平上对计算得到的构型进行了能量校正. 应用经典过渡态理论(TST)与变分过渡态理论(CVT), 并结合小曲率隧道(SCT)效应模型校正的方法计算了标题反应在200-3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明: HOSO+NO反应在单重态和三重态条件下均可发生, 其中单重态反应为主反应通道, HNO+SO2为主产物. 并利用电子密度拓扑分析方法研究主反应通道反应过程中的化学键变化.  相似文献   

13.
The rate constants of the H‐abstraction reactions from cyclopropane by H, O (3P), Cl (2P3/2), and OH radicals have been calculated over the temperature range of 250?2500 K using two different levels of theory. Calculations of optimized geometrical parameters and vibrational frequencies are performed using the MP2 method combined with the cc‐pVTZ basis set and the 6–311++G(d,p) basis set. Single‐point energy calculations have been carried out with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (perturbatively) electron excitations CCSD(T) using either the cc‐pVTZ, aug‐cc‐pVTZ, and aug‐cc‐pVQZ basis sets or the 6–311++G(3df,3pd) basis set. The CCSD(T) calculated potential energies have been extrapolated to the complete basis limit (CBS) limit. The Full Configuration Interaction (FCI) energies have been also estimated using the continued‐fraction approximation as proposed by Goodson (J. Chem. Phys., 2002, 116, 6948–6956). Canonical transition‐state theory combined with an Eckart tunneling correction has been used to predict the rate constants as a function of temperature using two kinetic models (direct abstraction or complex mechanism) at two levels of theory (CCSD(T)‐cf/CBS//MP2/cc‐pVTZ and CCSD(T)‐cf/6–311++G(3df,3pd)//MP2/6–311++G(d,p)). The calculated kinetic parameters are in reasonable agreement with their literature counterparts for all reactions. In the light of these trends, the use of the Pople‐style basis sets for studying the reactivity of other systems such as larger cycloalkanes or halogenated cycloalkanes is recommended because the 6–311++G(3df,3pd) basis set is less time consuming than the aug‐cc‐pVQZ basis set. Based on our calculations performed at the CCSD(T)‐cf/CBS//MP2/cc‐pVTZ level of theory, the standard enthalpy of formation at 298 K for the cyclopropyl radical has been reassessed and its value is (290.5 ± 1.6) kJ mol?1.  相似文献   

14.
A direct ab initio dynamics method was carried out for the reaction CH3OCl + OH --> products. Three abstraction channels from chlorine atom, in-plane hydrogen, and out-of-plane hydrogen atoms at the CH3 group have been found. The optimized geometries and frequencies of the stationary points and the minimum-energy paths (MEPs) were calculated at the MP2/6-311G(d,p) level. To improve the reaction enthalpy and potential barrier, single-point calculations were made at three higher levels of theory, the approximate QCISD(T)/6-311++G(3df,2pd), G3, and G3(MP2) levels. Furthermore, the rate constants for three abstraction channels were evaluated using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) over a wide temperature range of 220-2000 K at above three higher theory levels, respectively. The calculated rate constants as well as branching rates are in reasonable agreement with the experimental values in the temperature region 250-341 K. The present results indicate H-abstraction especially from out-of-plane hydrogen is the main reaction pathway, while Cl-abstraction is much less competitive.  相似文献   

15.
The reaction mechanism of CF(3)CH(2)OH with OH is investigated theoretically and the rate constants are calculated by direct dynamics method. The potential energy surface (PES) information, which is necessary for dynamics calculation, is obtained at the B3LYP/6-311G (d, p) level. The single-point energy calculations are performed at the MC-QCISD level using the B3LYP geometries. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. By means of isodesmic reactions, the enthalpies of the formation for the species CF(3)CH(2)OH, CF(3)CHOH, and CF(3)CH(2)O are estimated at the MC-QCISD//B3LYP/6-311G (d, p) level of theory. The rate constants for two kinds of H-abstraction channels are evaluated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) over a wide range of temperature 200-2000 K. The calculated results are in good agreement with the experimental values in the temperature region 250-430 K. The present results indicate that the two channels are competitive. Below 289 K, hydroxyl-H-abstraction channel has more contribution to the total rate constants than methylene-H-abstraction channel, while above 289 K, methylene-H-abstraction channel becomes more important and then becomes the major reaction channel.  相似文献   

16.
A theoretical study on the mechanism of the OH reactions with HCN and CH(3)CN, in the presence of O2, is presented. Optimum geometries and frequencies have been computed at BHandHLYP/6-311++G(2d,2p) level of theory for all stationary points. Energy values have been improved by single-point calculations at the above geometries using CCSD(T)/6-311++G(2d,2p). The initial attack of OH to HCN was found to lead only to the formation of the HC(OH)N adduct, while for CH(3)CN similar proportions of CH(2)CN and CH(3)C(OH)N are expected. A four-step mechanism has been proposed to explain the OH regeneration, experimentally observed for OH + CH(3)CN reaction, when carried out in the presence of O2. The mechanism steps are as follows: (1) OH addition to the C atom in the CN group, (2) O2 addition to the N atom, (3) an intramolecular H migration from OH to OO, and (4) OH elimination. This mechanism is in line with the one independently proposed by Wine et al. for HCN. The results obtained here suggest that for the OH + HCN reaction, the OH regeneration might occur even in larger extension than for OH + CH(3)CN reaction. The agreement between the calculated data and the available experimental evidence on the studied reactions seems to validate the mechanism proposed here.  相似文献   

17.
The reaction of F(2P) with acetone has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the G3MP2 level using the MP2/6-311G(d,p) optimized structures. Additionally, to ensure the accuracy of the calculations, optimizations with either larger basis set (e.g., MP2/G3MP2Large) or higher level electron correlation [e.g., CCSD/ 6-311G(d,p)] were also performed. It has been revealed that the F + CH3C(O)CH3 reaction proceeds via two pathways: (1) the direct hydrogen abstraction of acetone by F gives the major products HF + CH3C(O)CH2; (2) the addition of F atom to the >C=O double bond of acetone and the subsequent C-C bond cleavage gives the minor products CH3 + CH3C(O)F. All other product channels are of no importance due to the occurrence of significant barriers. Both abstraction and addition appear to be barrierless processes. Variational transition state model and multichannel RRKM theory were employed to calculate the temperature- and pressure-dependent rate constants and branching ratios. The predicted rate constants for the abstraction channel and the yields of HF + CH3C(O)CH3 and CH3 + CH3C(O)F are both in good agreement with the experimental data at 295 K and 700 Torr. A negative temperature dependence of the overall rate constants was predicted at temperatures below 500 K.  相似文献   

18.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

19.
The Si-C bond breakings in tetramethylsilane (TMS) when interacting with H/H2 and the successive H abstractions from SiH4/CH4 in the gas mixture of H2/ CH4/TMS were studied at the CCSD(T)/6-311+G**//MP2/6-31+G** level of theory. Their rate constants between 1500 and 2500 K were estimated using a conventional transition state theory. The results indicate that (i) it is mainly the H radical that causes the Si-C bond breaking in TMS, and (ii) the successive H abstractions from SiH4 are much easier and faster than those from CH4. At low temperatures the differences of rate constants among the four types of the reactions are large, but generally reduced at high temperatures. The reaction rates show no selectivity over the pressure as verified at P = 0.00025, 0.025, 1, and 100 atm, respectively. Our results could provide the following microscopic level understanding of reactions in the synthesis of diamond/beta-SiC nanocomposite films. Although the Si content is smaller than that of C in the precursor gases, the gas mixture activated by microwave plasma technique could provide Si sources with a higher rate. The produced Si sources with excellent rigidity in sp3 hybridization competitively occupy the space on the substrate together with C sources, resulting in the deposition of diamond/beta-SiC nanocomposite films.  相似文献   

20.
We observed the microwave spectrum of ethyl isovalerate by molecular beam Fourier transform microwave spectroscopy. The rotational and centrifugal distortion constants of the most abundant conformer were determined. Its structure was investigated by comparison of the experimental rotational constants with those obtained by ab initio methods. In a first step, the rotational constants of various conformers were calculated at the MP2/6-311++G** level of theory. Surprisingly, no agreement with the experimental results was found. Therefore, we concluded that in the case of ethyl isovalerate more advanced quantum chemical methods are required to obtain a reliable molecular geometry. Ab initio calculations carried out at MP3/6-311++G**, MP4/6-311++G**, and CCSD/6-311++G** levels and also density functional theory calculations using the B3LYP/6-311++G** method gave similar results for the rotational constants, but they were clearly distinct from those obtained at the MP2/6-311++G** level. With use of these more advanced methods, the rotational constants of the lowest energy conformer were in good agreement with those obtained from the microwave spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号