首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyaniline (PANI) microspheres were prepared by electrochemical polymerization. To obtain PANI having novel micro- and nanostructures, by the potential scan technique, aniline was electropolymerized in the presence of DNA using four polymerizing solutions containing different acids: H2SO4, C6H5SO3H, HClO4, and CF3COOH. The growth rate of the PANI film on the electrode surface decreased by the presence of DNA, suggesting that DNA interacted with the growing PANI molecules during the electropolymerization. The growth rate also depended on the type of acid, i.e., the anion, in the polymerizing solution and was in the order of SO4 2− > C6H5SO3 > ClO4 > CF3COO, which significantly coincided with the reverse order of the Hofmeister series representing the lyophilicity of the anion. When aniline was electropolymerized in the CF3COOH polymerizing solution containing DNA, PANI microspheres were obtained without any templates. This PANI showed a sufficient redox activity in the less acidic solution in which the ordinary PANI has a slight redox activity. On the other hand, the electronic state of the PANI differed from the ordinary ones; a new absorption band was evident at 620 nm. The difference in the redox activity and electronic state suggested that the DNA molecules were incorporated in the PANI and electronically interacted with the PANI molecules.  相似文献   

2.
The chemical oxidation of aniline with ammonium peroxydisulfate to form polyaniline (PANI) films has been studied in different aqueous acid mediums such as HCl, HNO3, and H2SO4. The yield and the growth rate of the PANI film deposition were measured using the quartz crystal microbalance (QCM) technique. The effect of different salts such as KCl, NaNO3, and K2SO4 and their concentration on the yield and the growth rate of the film formation are investigated. The yield of PANI film deposition depends on the acid used and the type of salts as well as their concentrations. When HCl and HNO3 were used as media, the addition of salts with the same anion has no effect. However, when H2SO4 was used as media, the addition of salts with the same anions as the medium enhances the yield of PANI film deposition. The UV–visible spectra of the produced PANI films in the absence and presence of the salts are also studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Composite film electrodes were prepared by open-circuit Pt deposition on polymeric PANI films that were electrosynthesized from aniline acid solutions with suspended carbon particles (CPs). Gold, nickel, and a Ni-based alloy, Nichrome, were used as substrates, and carbon particles, carbon nanotubes (CNT), and Vulcan XC-72R carbon black, suspended in the monomer acid solution, were incorporated into the film. Pt particles were dispersed on films grown on Ni-based substrates by deposition from a Pt(IV) acid solution at open circuit (OC). CNT trapped into the PANI films have a favorable influence on Pt dispersion. The novel composite electrodes showed significant catalytic activity for methanol oxidation.  相似文献   

4.
电沉积三维多孔Pt/SnO2薄膜及其对甲醇的电催化氧化   总被引:1,自引:0,他引:1  
周颖华  岑树琼  李则林  牛振江 《化学学报》2007,65(23):2669-2674
在高电流密度下以阴极析出的氢气泡为“模板”电沉积三维多孔Sn薄膜, 经在200 ℃ 2 h和400 ℃ 2 h热处理氧化后电沉积金属Pt, 制得三维多孔的Pt/SnO2 (3D-Pt/SnO2)薄膜. 通过扫描电镜(SEM)和X射线衍射(XRD)分析了薄膜的形貌和结构. 结果显示Pt主要沉积在SnO2枝晶上, 形成Ptshell/SnO2core结构的枝晶. 在0.5 mol•dm-3 H2SO4+1.0 mol•dm-3 CH3OH溶液中的循环伏安结果表明, 3D-Pt/SnO2薄膜电极在酸性溶液中电催化氧化甲醇的性能优于电沉积的纯铂电极, 而且具有较高的稳定性.  相似文献   

5.
Effect of electrochemical oxidation of glassy carbon on deposition of platinum particles and electrocatalytic activity of platinum supported on oxidized glassy carbon (Pt/GCOX) were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + H2PtCl6 solution. Glassy carbon was anodically polarised in 0.5 M H2SO4 at 2.25 V vs. saturated calomel electrode (SCE) during 35 s. Electrochemical treatment of GC support, affecting not significantly the real Pt surface area, leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCOX electrode for methanol oxidation is larger than polycrystalline Pt and for more than one order of magnitude larger than Pt/GC electrode. This increase in activity indicates the pronounced role of organic residues of GC support on the properties of Pt particles deposited on glassy carbon.  相似文献   

6.
Nanostructured Pd thin films are directly formed on polycrystalline Pt and Au substrates in the absence of hard and soft templates by using a cyclic potential sweep technique, which is confirmed by both SEM observation and their unusual cyclic voltammetric characteristics in H2SO4 solution. Interestingly, the bimetallic electrodes obtained after the deposition of ultrathin Pd films onto Pt and Au substrates display much higher catalytic activity towards the electro-oxidation of methanol than the bulk Pt electrode. Besides, it is found that the foreign metal substrate has great influence on the electro-catalytic behavior of the Pd films.  相似文献   

7.
MoO3/Pt binary catalysts with various Mo/Pt ratios were prepared by an electrodeposition method for use as the anode in a direct methanol fuel cell. Pt was electrodeposited onto indium tin oxide (ITO) substrate, and then MoO3 was electrodeposited from an Mo-peroxo electrolyte on the top of Pt with different deposition times. The crystallinity of synthesized films was analyzed by X-ray diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM/EDS) was employed to investigate the surface morphology and composition. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry and chronoamperometry in a mixture of 0.5 M H2SO4 and 0.5 M CH3OH aqueous solution. Electrocatalytic activity for CO oxidation was also evaluated in a 0.5-M H2SO4 solution. The addition of a proper amount of MoO3 was found to significantly improve both the catalytic activity and stability for methanol oxidation.  相似文献   

8.
《Electroanalysis》2003,15(4):278-286
The electrocatalytic oxidation of methanol at a glassy carbon electrode modified by a thin film of poly(o‐aminophenol) (PoAP) containing Pt, Pt‐Ru and Pt‐Sn microparticles has been investigated using cyclic voltammetry as analytical technique and 0.10 M perchloric acid as supporting electrolyte. It has been shown that the presence of PoAP film increases considerably the efficiency of deposited Pt microparticles toward the oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru or specially Sn is co‐deposited in the polymer film. The effects of various parameters such as the thickness of polymer film, concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated.  相似文献   

9.
Carbon ceramic electrode, a new electrode substrate, was prepared by sol–gel procedure and used for the electropolymerization of o-phenylenediamine and incorporation of platinum nanoparticles into the resulting poly(o-phenylenediamine) (PoPD) film. The modified electrode was used for electrooxidation of methanol in 0.3 M H2SO4 as supporting electrolyte. The presence of PoPD film increased considerably the efficiency of deposited Pt nanoparticles toward the electrocatalytic oxidation of methanol. The effective parameters on the electrooxidation of methanol, i.e., amounts of polymer and Pt catalyst, medium temperature, working potential limit in anodic direction, and potential scan rate, were investigated, and the results were discussed.  相似文献   

10.
The composite electrode of platinum‐modified polyaniline film is formed in 0.5 M H2SO4 + 3 mM H2PtCl6 solution by cyclic potential or constant potential deposition of platinum particles in polyaniline film. To make a comparison, the polyaniline film with the same initial thickness and structure is also treated with the cyclic potential or constant potential polarization in 0.5 M H2SO4 solution. The electrochemical impedance spectroscopy (EIS) of the composite electrode of platinum‐modified polyaniline film is studied in sulfuric acid solution and compared with the EIS of the polyaniline film without platinum dispersion. The results show that the different modes of potential polarization affect greatly the nature and distribution of the platinum particles, instead of the structure of the polyaniline film (matrix). The electrode reaction kinetics and mass transport process parameters involving charge transfer resistance (Rct), double layer capacitance (Cdl), constant phase elements (CPE) and Warburg impedance in platinum substrate/platinum‐modified polyaniline film/solution interface are discussed on the basis of the interpretation of the characteristic impedance spectra and connected to the electrocatalytic activity on the oxidation of methanol molecules.  相似文献   

11.
A novel route to prepare polyaniline (PANI)‐supported Pd(0) nanoparticles by a one‐pot chemical route is presented. Nanosized Pd(0) particles were first prepared by reduction of Pd(OAc)2 using t‐BuONa activated sodium hydride in refluxing THF. A ligand exchange with aniline on t‐BuONa‐stabilized Pd(0) particles yielded aniline‐stabilized particles. Pd(0)/PANI nanocomposites were finally obtained by polymerizing aniline‐stabilized Pd(0) particles using ammonium persulfate. Nanocomposites were characterized by transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. Results show that this one‐pot experimental route is successful in producing hybrid materials constituted of Pd(0) nanoparticles stabilized by PANI due to the strong binding of PANI amine groups to Pd(0) particles. TEM images of the nanohybrids show that metal particles with diameters of ca. 4.9 nm are homogeneously dispersed in PANI. The preliminary results indicate that the Pd(0) particles supported on PANI behave as efficient heterogeneous catalysts in the Heck and Suzuki–Miyaura reactions of aryl iodides. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The focus of this study was to synthesize the inherently conductive polymer polyaniline using an optimized process to prepare polyaniline/silicon dioxide (PANI/SiO2) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/SiO2 composite films were prepared by drop‐by‐drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/SiO2 composite films were measured according to the standard four‐point‐probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/SiO2 composites were also investigated by spectroscopic methods including UV‐Vis, FT‐IR, and Photoluminescence. UV‐Vis and FT‐IR studies showed that SiO2 particles affect the quinoid units along the polymer backbone and indicate strong interactions between the SiO2 particles and the quinoidal sites of PANI (doping effect). The photoluminescence properties of PANI and PANI/SiO2 composites were studied and the PANI/SiO2 composites showed increased intensity as compared to neat PANI. The increase of conductivity of PANI/SiO2 composite may be partially due to the doping or impurity effect of SiO2 where the silicon dioxides compete with chloride ions. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the SiO2 were well dispersed and isolated in composite films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The preparation method of a self-supporting doped-polyaniline film electrode and its open-circuit potential (OCP) in NaClO4 and Na2SO4 solutions with different pH value as well as cathodic polarization behavior have been investigated for the purpose of discussing the corrosion electrochemical behavior of polyaniline (PANI) in the acid solution. X-ray photoelectron spectroscopy (XPS) reveals that the lower pH corresponds to higher doping level of H+ in the film and a more positive OCP of PANI film electrode. OCP of the PANI film reached 0.35 V vs. SCE in 1M H2SO4, which is more positive than that of most metals, suggests that PANI would act as cathode when it couples with these metals. The cathodic polarization experiments indicate that the dominating cathodic polarization process of PANI is reversible doping and dedoping reaction and the reduction of dissolve oxygen has very little contribution to it. The potentiostatic current-time curves exhibit a large transient current density at initial stage of polarization, which should be attributed to the charge stored in the film and a relative less steady state current density at the subsequent stage of polarization, which is provided by its doping/dedoping equilibrium activity. Such a current characteristic of PANI electrode might be the force of PANI to provide the passivation protection for some active-passive metals. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1205–1212. The text was submitted by the authors in English.  相似文献   

14.
PtSnZn nanosheet thin film with stable and high activity towards methanol electro‐oxidation was synthesized via a simple reduction of organometallic precursors including [PtCl2(cod)] (cod = cis,cis‐1,5‐cyclooctadiene) and [Sn(CH3)4] complexes, in the presence of [Zn(acac)2] (acac = acetylacetonate) complex at toluene–water interface. Catalytic activities of PtSnZn nanosheets were investigated in the p‐nitrophenol (p‐Nip) reduction and methanol oxidation reactions. The obtained results demonstrate that PtSnZn nanosheets exhibit a good electrocatalytic performance for methanol oxidation reaction, the catalytic activity of the PtSnZn nanosheets being at least 3.5 times higher than that of Pt nanoparticle thin film. Also, the apparent rate constant obtained for p‐Nip reduction with the PtSnZn nanosheets is at least 2.3 times higher than that for Pt nanoparticle thin film due to the appropriate interaction between platinum, tin and zinc metals and geometric properties of PtSnZn nanosheet thin film. Nanosheets are highly favourable for superior catalytic performances due to their geometric properties. A facile and efficient route was used to synthesize trimetallic alloy thin film at oil–water interface.  相似文献   

15.
Nickel foam and five nickel foam-based composite electrodes were prepared for being used as anode materials for the electrooxidation of methanol in KOH solution containing 0.1 and 1.0 M of methanol. The layered electrodes composed of nickel foam, platinum nanoparticles, polyaniline (PANI) and/or porous carbon (C) prepared in various assemblies. As shown by SEM analysis, depending on the preparation conditions, the electrodes of different morphologies were obtained. Using the cyclic voltammetry method, the oxidation of methanol on nickel foam electrode was observed in the potential range 0.4 V ↔ 0.7 V, where the Ni(OH)2/NiOOH transformation occurred. The presence of Pt particles in electrode gave rise to the increase in electrocatalytic activity in this potential range. For electrodes containing dispersed platinum catalyst (Ni/Pt, Ni/PANI/Pt and Ni/C/Pt), the oxidation of methanol was noted also in the potential range −0.5 V ↔ 0.1 V. The electrocatalytic activities of the examined electrodes toward methanol oxidation at low potentials were in order Ni/Pt > Ni/C/Pt > Ni/PANI/Pt, whereas at high potentials in order Ni/PANI/Pt > Ni/Pt> Ni/C/Pt > Ni. Among the examined electrodes, the most resistant to cyclic poisoning appeared to be the Ni/C/Pt electrode. Presented at the 4Th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

16.
Polyaniline doped with Zn2+ (PANI/Zn2+) films was synthesized by cyclic voltammetric method on stainless steel mesh substrates in 0.2 mol L?1 aniline and 0.5 mol L?1 sulfuric acid electrolyte with various concentrations of zinc sulfate (ZnSO4·7H2O). The structure and morphology of PANI and PANI/Zn2+ films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques, respectively. The electrochemical properties of PANI and PANI/Zn2+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy in 0.5 mol L?1 H2SO4 electrolyte in a three-electrode system. The results show that the surface morphology of PANI/Zn2+ is more rough than that of pure PANI. The specific capacitance of the PANI/Zn2+ film displays a larger specific capacitance of 738 F g?1, lower resistance, and better stability as compared with the pure PANI film. Thus, good capacitive performance demonstrates its potential superiority for supercapacitors.  相似文献   

17.
In this work, we examine the electrocatalytic activity of electrodeposited Platinum (Pt)-Nickel (Ni) alloy layers on an inert substrate electrode for methanol oxidation reaction. Analyses using energy-dispersive fluorescent X-ray analysis and powder X-ray diffractometry confirm alloying of Pt with Ni in a range of compositions. Steady-state polarisation measurements in 0.5 M methanol+0.5 M H2SO4 solutions clearly show that the onset of electro-oxidation shifts to less anodic potential values (approximately 160 mV), while also exhibiting current enhancements up to ~15 times the currents obtained for the pure Pt electrodeposit. A linear relationship between the cyclic voltammetric peak (oxidation) current and [MeOH] is observed at a scan rate of 50 mVs–1, thus indicating reduced influence of adsorbed CO (COads) surface poison. A critical composition, Pt (92%)/Ni (8%) [denoted Pt-Ni(3) alloy] is found to exhibit maximum electrocatalytic activity, beyond which the activity drops, whereas pure Ni does not catalyse the reaction. While the promotion of electro-oxidation is understood to be largely due to the alloy catalyst, surface redox species of Ni oxide formed during the electro-oxidation process may also contribute to the oxygenation of COads, thereby enhancing the oxidation current. Plausible mechanisms of methanol oxidation on Pt/ transition metal alloy electrocatalysts are discussed in terms of electron transfer (in the alloy) and the role of Ni oxide species.  相似文献   

18.
Metal (M) oxide (M: Ir, Os, Pd, Pt, Rh, Ru) together with MaO2 and MnO2 alone, were coated on SnO2 films and the anode behavior was examined in 1.0 N H2SO4, 1.0 N NaOH and 1.0, N NaCl aqueous solutions at 25°. The results are compared with those of DSA and of metallic Pt.  相似文献   

19.
Transients of currents during the adsorption of CO on polycrystalline (pc) Pt in solutions of H2SO4 and H2SO4 + HCl are measured at a constant potential. The obtained values are compared with relevant reference data for Pt electrodes. Possible reasons for the established differences are discussed. Transient currents for the methanol adsorption on pcPt and Pt/Pt are compared. A method for correct determination of the composition of a chemisorption layer, which forms during dissociative adsorption of simple organic compounds of the type of RH m , is considered. Experimental data on the methanol adsorption suggest that adsorption products on pcPt are chiefly species of CO. On Pt/Pt, at low potentials, in addition to CO one should assume the adsorption of species of HCO in perceptible amounts.  相似文献   

20.
Electrochemically active ruthenium oxide (RuOx?nH2O), ruthenium oxide/hexachloroiridate (RuOx?nH2O/IrCl62?), and ruthenium oxide/hexachloroiridate/platinum (RuOx?nH2O/IrCl62?/Pt) hybrid films have been prepared from the mixture of Ru3+, IrCl62?, and PtCl62? ions in an acidic aqueous solution. The repetitive cyclic voltammetry (CV) has been used for the film preparation process. The electrochemical properties and the growth mechanism of the above mentioned different kinds of hybrid films have been investigated using CV and electrochemical quartz crystal microbalance. The morphological and quantitative analyses have been carried out using scanning electron microscopy, atomic force microscopy and energy dispersive X‐ray. Among these above mentioned films, RuOx?nH2O/IrCl62?/Pt hybrid film exhibits promising electrocatalytic activity towards the oxidation of arsenic oxide, methanol and reduction of oxygen. Further, detailed study of electrocatalysis using rotating ring disk electrodes and amperometric methods have been carried out for arsenic oxide oxidation and oxygen reduction reactions at the hybrid films. From the results, the sensitivity of RuOx?nH2O/IrCl62?/Pt hybrid film has been calculated for arsenic oxide as 0.7 mA mM?1; and for oxygen as 1.8 mA mM?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号