首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symmetric, linear phase, slice-selective RF pulses were analyzed theoretically for performing slice-selective coherence transfer. It was shown using numerical simulations of product operators that, when a prefocusing gradient of the same area as that of the refocusing gradient is added, these pulses become slice-selective universal rotator pulses, therefore, capable of performing slice-selective coherence transfer. As an example, a slice-selective universal rotator pulse based on a seven-lobe hamming-filtered sinc pulse was applied to in vivo single-shot simultaneous spectral editing and spatial localization of neurotransmitter GABA in the human brain.  相似文献   

2.
A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90 degrees, a slice-selective universal rotator 90 degrees, and a spectral-spatial pulse composed of two slice-selective universal rotator 45 degrees pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C(3) and C(4) methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 +/- 0.2 micromol/g (means +/- SD, n = 15) in the fronto-parietal region of the human brain in vivo.  相似文献   

3.
The purpose of this study was to investigate how flow affects slice-selective excitation, particularly for radiofrequency (rf) pulses optimized for slice-selective excitation of stationary material. Simulation methods were used to calculate the slice profiles for material flowing at different velocities, using optimal flow compensation when appropriate. Four rf pulses of very different shapes were used in the simulation study: a 90° linear-phase Shinnar-LeRoux pulse; a 90° self-refocusing pulse; a minimum-phase Shinnar-LeRoux inversion pulse; and a SPINCALC inversion pulse. Slice profiles from simulations with a laminar flow model were compared with experimental studies for two different rf pulses using a clinical magnetic resonance imaging (MRI) system. We found that, for a given rf pulse, the effect of flow on slice-selective excitation depends on the product of the selection gradient amplitude, the component of velocity in the slice selection direction, and the square of the rf pulse duration. The shapes of the slice profiles from the Shinnar-LeRoux pulses were relatively insensitive to velocity. However, the slice profiles from the self-refocusing pulse and the SPINCALC pulse were significantly degraded by velocity. Experimental slice profiles showed excellent agreement with simulation. In conclusion, our study demonstrates that slice-selective excitation can be significantly degraded by flow depending on the velocity, the gradient amplitude, and characteristics of the rf excitation pulse used. The results can aid in the design of rf pulses for slice-selective excitation of flowing material.  相似文献   

4.
磁共振现代射频脉冲理论在非均匀场成像中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
在磁共振非均匀场成像中,传统的射频脉冲导致回波信号的衰减.为了减小和消除这种磁共振信号的衰减,在讨论了经典理论的基础上根据非线性动力学中的逆散射理论和Shinnar-Le Roux方法导出了用于非均匀场成像的射频脉冲设计方法.模拟结果表明,采用逆散射理论和Shinnar-Le Roux方法优化的脉冲序列可以明显提高信号的信噪比. 关键词: 磁共振成像 射频脉冲 非线性系统  相似文献   

5.
In this communication we present a method for single-slice mapping of ultrashort transverse relaxation times T(2). The RF pulse sequence consists of a spin echo preparation of the magnetization followed by slice-selective ultrashort echo time (UTE) imaging with radial k-space sampling. In order to keep the minimum echo time as small as possible, avoid out-of-slice contamination and signal contamination due to unwanted echoes, the implemented pulse sequence employs a slice-selective 180° RF refocusing pulse and a 4-step phase cycle. The slice overlap of the two slice-selective RF pulses was investigated. An acceptable Gaussian slice profile could be achieved by adjusting the strength of the two slice-selection gradients. The method was tested on a short T(2) phantom consisting of an arrangement of a roll of adhesive tape, an eraser, a piece of modeling dough made of Plasticine?, and a 10% w/w agar gel. The T(2) measurements on the phantom revealed exponential signal decays for all samples with T(2)(adhesive tape)=(0.5 ± 0.1)ms, T(2)(eraser)=(2.33 ± 0.07)ms, T(2)(Plasticine?)=(2.8 ± 0.06)ms, and T(2)(10%agar)=(9.5 ± 0.83)ms. The T(2) values obtained by the mapping method show good agreement with the T(2) values obtained by a non-selective T(2) measurement. For all samples, except the adhesive tape, the effective transverse relaxation time T(2)(?) was significantly shorter than T(2). Depending on the scanner hardware the presented method allows mapping of T(2) down to a few hundreds of microseconds. Besides investigating material samples, the presented method can be used to study the rapidly decaying MR-signal from biological tissue (e.g.: bone, cartilage, and tendon) and quadrupolar nuclei (e.g.: (23)Na, (35)Cl, and (17)O).  相似文献   

6.
李聿为  肖亮 《波谱学杂志》2016,33(4):590-596
设计了一种基于现场可编程门阵列(FPGA)与直接数字频率合成(DDS)的磁共振成像(MRI)射频脉冲发生器,采用FPGA实现DDS,并内置软脉冲波形双端口随机存取存储器(RAM)、乘法器以及相关的控制逻辑.实现了较高的技术指标,其中频率、相位与幅度分辨率分别为32 bits、16 bits与16 bits,软脉冲波形的时间精度可达0.1?s.FPGA提供了一个可编程的接口,便于序列控制器对其进行控制,以输出射频脉冲.MRI实验结果证明了该设计的可行性.  相似文献   

7.
A gradient-echo line scan imaging technique was developed which employs two-dimensional spatially selective radiofrequency (2DRF) pulses for consecutively exciting individual columns of transverse magnetization, i.e., image lines. Although a variety of trajectories are possible for 2DRF excitation, the current implementation involved a blipped-planar trajectory in conjunction with additional saturation RF pulses to suppress side excitations above and below the desired image section, i.e., along the blip direction of the 2DRF pulse. Human brain imaging at 2.0 T (Siemens Vision, Erlangen, Germany) resulted in measuring times of 5.2 s for a 5-mm section at 1.0 x 1.0 mm in-plane resolution. Functional neuroimaging of the motor cortex at 1.2 s temporal resolution and 0.78 x 1.56 mm in-plane resolution exploited the capability of imaging inner volumes (here a 25-mm strip) without signal aliasing.  相似文献   

8.
In this study 2H T2rho DQF NMR spectra of water in MCM-41 were measured. The T2rho double-quantum filtered (DQF) NMR signal is generated by applying a radio frequency (RF) field for various durations and then observed after a monitor RF pulse. It was found that the transfer between different quantum coherences by the couplings during long-duration RF fields (i.e., soft pulses) and that residual quadrupolar interaction dominates the signal decay. Knowledge of coherence transfer during long-RF pulses has special significance for the development of sophisticated multi-quantum NMR experiments especially multi-quantum MRI applications.  相似文献   

9.
A new method is described which allows the spatial distribution of the self-diffusion coefficient over a sample to be determined in a single NMR imaging experiment. This technique combines NMR imaging principles with the pulsed-field-gradient multiple-spin-echo (PGMSE) method. Two basic forms of the pulse sequence for PGMSE imaging have been devised and image intensity as a function of the diffusion-gradient strength is given. The effects of the imaging gradients on the additional diffusion attenuation of image intensities are considered. Finally, the preliminary experimental verification of the PGMSE imaging technique is illustrated by measuring the diffusion coefficient for doped water using the version of the pulse sequence in which all of the 180° radiofrequency pulses are not slice-selective.  相似文献   

10.
The Look–Locker echo-planar imaging (LL-EPI) sequence has been numerically optimized in terms of the signal-to-noise ratio in the measured value of T1, for both single-shot (repetition time (TR) = ∞), and dynamically repeated T1 measurements. The sequence is optimized for the normal biologic range of T1 (0.2 s to 2.0 s) and for a range of sequence parameters found on most magnetic resonance (MR) scanners. Both linearly and geometrically spaced magnetization sample pulse intervals were considered. For single-shot measurements, the sequence with 24 linearly spaced sample pulses, an inversion time of 0.01 s, an inter-sample pulse delay of 0.10 s, and a sample radiofrequency (RF) pulse flip angle of 25o was found to be optimum. When the number of sample pulses was limited due to hardware limitations, different pulse sequence parameters were indicated. The optimization procedures used are appropriate for any single-shot T1 mapping sequence variant and for any rapid T1 mapping application. The use of an optimized Look–Locker echo-planar imaging sequence is demonstrated by an example of dynamic contrast-enhanced scanning in the brain using fast T1 mapping.  相似文献   

11.
A novel method for mapping the longitudinal relaxation time in a clinically acceptable time is developed based on a recent proposal [J.-J. Hsu, I.J. Lowe, Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization, J. Magn. Reson. 169 (2004) 270-278] and the speed of the spiral pulse sequence. The method acquires multiple curve-fitting samples with one RF pulse train. It does not require RF pulses of specific flip angles (e.g., 90 degrees or 180 degrees ), nor are the long recovery waiting time and the measurement of the magnetization at thermal equilibrium needed. Given the value of the flip angle, the curve fitting is semi-logarithmic and not computationally intensive. On a heterogeneous phantom, the average percentage difference between measurements of the present method and those of an inversion-recovery method is below 2.7%. In mapping the human brain, the present method, for example, can obtain four curve-fitting samples for five 128 x 128 slices in less than 3.2s and the results are in agreement with other studies in the literature.  相似文献   

12.
OBJECTIVE: An important source of error in arterial spin labeling (ASL) is incomplete static tissue subtraction due to imperfect slice profiles. This effect can be reduced by saturating the spins in the imaging area prior to labeling. In this study, the use of optimized presaturation is compared with the use of optimized RF pulses for minimizing this error. MATERIALS AND METHODS: Different methods for optimizing presaturation were simulated by numerical solution of the Bloch equation. Presaturation was optimized by changing the number of presaturation pulses, their position in the pulse sequence and the area of the crusher gradients following each saturation pulse. It was also investigated whether the use of optimized presaturation could reduce the tag gap needed to ensure complete static tissue subtraction. Simulation results were verified using phantom and in vivo studies at 3T. RESULTS: In proximal inversion with control for off-resonance effects, optimized presaturation could reduce the necessary tag gap to 15% of the imaging slab for experiments using standard RF pulses, while c-FOCI RF pulses could reduce it to 11%. In flow-sensitive alternating inversion recovery, a single presaturation pulse could reduce the inversion width to 122% of the imaging slab and neither multiple presaturation pulses nor optimized RF pulses could reduce it further. CONCLUSION: Optimized presaturation can reduce the necessary inversion width to the same level as if using optimized RF pulses and can, therefore, be used to optimize ASL sensitivity. Furthermore, optimized presaturation can reduce the B(1)-dependent sensitivity in static tissue subtraction.  相似文献   

13.
Ventral and rostral regions of the brain are of emerging importance for the MRI characterization of early dementia, traumatic brain injury and epilepsy. Unfortunately, standard single-shot echo planar diffusion-weighted imaging of these regions at high fields is contaminated by severe imaging artifacts in the vicinity of air–tissue interfaces. To mitigate these artifacts and improve visualization of the temporal and frontal lobes at 7 T, we applied a reduced field-of-view strategy, enabled by outer volume suppression (OVS) with novel quadratic phase radiofrequency (RF) pulses, combined with partial Fourier and parallel imaging methods. The new acquisition greatly reduced the level of artifacts in six human subjects (including four patients with early symptoms of dementia).  相似文献   

14.
近年来,为提高磁共振成像(MRI)信号信噪比(SNR)、缩短成像时间,同时多层成像技术受到了极大的关注.为了实现同时多层的选择性激发,现有的多层成像序列大多使用组合射频(RF)脉冲,该脉冲可包含多个独立的幅值相同相位不同的简单脉冲,由于其采用简单的线性叠加方法,该类脉冲射频功率随脉冲数量呈现平方增长,因而应用受限.针对这一问题,基于自旋动力学和优化控制原理,本文提出了一种针对同时多层MRI的选择性射频脉冲的数值优化方法,该方法充分运用射频脉冲的调控机制,获得优化脉冲,并配合层选梯度,可实现任意层厚、层间距、层数的同时高效选择性激发.最后,通过数字模体的同时多层模拟成像实验验证了优化脉冲的有效性.  相似文献   

15.
Azaña J  Park Y  Ahn TJ  Li F 《Optics letters》2008,33(5):437-439
A very simple self-referenced, linear pulse-characterization technique based on spectral phase reconstruction by frequency-domain signal differentiation is introduced. This technique can be implemented using electro-optic intensity modulation of the pulse under test with a synchronized RF sinusoid. The pulse spectral phase profile can be accurately and unambiguously reconstructed from only two measured energy spectra, i.e., at the input and at the output of the modulator, using a direct analytic equation. The method is experimentally demonstrated by precisely characterizing microwatt-power picosecond pulses after linear dispersion through short sections (50-700 m) of conventional single-mode fiber.  相似文献   

16.
何刚  王为民 《波谱学杂志》2017,34(3):338-346
介绍了高场磁共振成像(MRI)多源发射技术的原理,提出了一种用于高场MRI系统的多源射频信号发射机.它能并行输出多路频率、相位、幅度,可快速独立调节的射频脉冲信号.该射频发射机的实现基于单片现场可编程门阵列(FPGA)和多通道数模转换器(DAC)芯片,FPGA读取预存于双端口随机存取存储器(RAM)中的射频信号参数,并利用读取的参数分别实现每路信号的直接数字频率合成(DDS)和信号调制等核心功能,获得多路数字射频信号;FPGA输出的数字信号经过高性能DAC转化为模拟信号,即所需要的射频信号.该射频发射机在设计中大量采用软件无线电技术,即利用Xilinx提供的IP核实现DDS和信号调制等主要功能,具有集成度高、体积小、灵活度高的优点,同时,该设计可以大大缩短开发时间,有效降低实现的难度和成本,为高场MRI谱仪的多源射频发射机的设计研制提供了一种低成本、高效、高性价比的方案.  相似文献   

17.
Parallel excitation using multiple transmit channels has emerged as an effective method to shorten multidimensional spatially selective radiofrequency (RF) pulses, which have a number of important applications, including B1 field inhomogeneity correction in high-field MRI. The specific absorption rate (SAR) is a primary concern in high-field MRI, where wavelength effects can lead to local peaks in SAR. In parallel excitation, the subjects are exposed to RF pulses from multiple coils, which makes the SAR problem more complex to analyze, yet potentially enables greater freedom in designing RF pulses with lower SAR. Parallel-excitation techniques typically employ either Cartesian or constant-density (CD) spiral trajectories. In this article, variable-density (VD) spiral trajectories are explored as a means for SAR reduction in parallel-excitation pulse design. Numerical simulations were conducted to study the effects of CD and VD spirals on parallel excitation. Specifically, the electromagnetic fields of a four-channel transmit head coil with a three-dimensional head model at 4.7 T were simulated using a finite-difference time domain method. The parallel RF pulses were designed and the resulting excitation patterns were generated using a Bloch simulator. The SAR distributions due to CD and VD spirals were evaluated quantitatively. The simulation results show that, for the same pulse duration, parallel excitation with VD spirals can achieve a lower SAR compared to CD spirals for parallel excitation. VD spirals also resulted in reduced artifact power in the excitation patterns. This gain came with slight, but noticeable, degrading of the spatial resolution of the resulting excitation patterns.  相似文献   

18.
The purpose of this study is to develop a fast and accurate temperature mapping method capable of both fat suppression and reduced field-of-view (rFOV) imaging, using a two-dimensional spatially-selective RF (2DRF) pulse. Temperature measurement errors caused by fat signals were assessed, through simulations. An 11×1140μs echo-planar 2DRF pulse was developed and incorporated into a gradient-echo sequence. Temperature measurements were obtained during focused ultrasound (FUS) heating of a fat-water phantom. Experiments both with and without the use of a 2DRF pulse were performed at 3T, and the accuracy of the resulting temperature measurements were compared over a range of TE values. Significant inconsistencies in terms of measured temperature values were observed when using a regular slice-selective RF excitation pulse. In contrast, the proposed 2DRF excitation pulse suppressed fat signals by more than 90%, allowing good temperature consistency regardless of TE settings. Temporal resolution was also improved, from 12 frames per minute (fpm) with the regular pulse to 28 frames per minute with the rFOV excitation. This technique appears promising toward the MR monitoring of temperature in moving adipose organs, during thermal therapies.  相似文献   

19.
Exact product operator solutions have been obtained for the evolution of weakly coupled spin-(1/2) I(m)S(n) systems during arbitrary RF irradiation of one spin. These solutions, which completely characterize the nature of J-coupling modulation during RF pulses, show that significant exchange occurs between single-spin magnetization and two-spin product operator states when the RF field strength is comparable to the coupling. In particular, a long (t(p) = [2J](-1) s), low-power (B(1) = J/2 Hz), constant amplitude pulse applied on resonance to one spin in an IS system completely interconverts the spinstates S(z) <--> 2S(x)I(z) and S(x) <--> 2S(z)I(z) when the RF is applied to the S spins, and interconverts S(x) <--> 2S(y)I(y) in 100% yield when the RF is applied to the I spins. Thus, these "J pulses," which select a bandwidth approximately equal to J Hz, may replace any combination of a (2J)(-1) delay period and a consecutive hard 90 degrees pulse in any polarization transfer or multiple quantum sequence. Although these rectangular pulses are highly frequency selective, in general they increase the replaced (2J)(-1) period by only a modest 40%, a time saving of a factor of 5 compared to existing pulses exhibiting the same selectivity. In favorable cases, there is no increase in duration of a pulse sequence using a particular type of J pulse, the 90(J) variety, which accomplishes the third spin state transformation listed above. J pulses will be advantageous for systems subject to rapid signal loss from relaxation and more generally for the enhanced operation of pulse sequences via the use of J modulation during RF irradiation.  相似文献   

20.
Slice-selective broadband refocusing pulses are of great interest in localized MR spectroscopy for improving spatial selectivity, reducing chemical-shift displacement errors, and reducing anomalous J modulation. In practice the bandwidth of RF pulses is limited by the maximum available B1 amplitude. The goal of the present work is to design slice-selective and broadband refocusing pulses which are tolerant against B1 deviations. Pulse design is performed by numerical optimization based on optimal control theory. A comprehensive study of different cost functions and their effect on the optimization is given. The optimized slice-selective broadband refocusing pulses are compared to conventional Shinnar-Le Roux (SLR), broadband SLR, and hyperbolic secant pulses. In simulations and experiments optimized pulses were shown to fulfill broadband slice specifications over a range of ±20% B1 scalings. Experimental validation showed a reduction of chemical-shift displacement error by a factor of 3 compared to conventional SLR pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号