首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou  Donghai  Zhou  Daming  Xu  Yingqiao  Sun  Xiaojing 《Meccanica》2022,57(1):255-282
Meccanica - Darrieus-type vertical axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically and the main components can be located at the base of the turbines. Therefore, VAWTs...  相似文献   

2.
Large Eddy Simulations (LES) of three different coupled configurations of Vertical Axis Wind Turbines (VAWT) are reported for two values of Tip Speed Ratio (TSR). A few studies are currently available on the wake features of isolated VAWTs, while detailed understanding of wake interaction between VAWTs is still limited, both from experiments and computations. A better insight would be very useful, since recent field tests suggested that interaction between VAWTs in array configurations is potentially beneficial, improving performance, compared to isolated turbines. It is shown here that mutual vortex interaction between wakes of coupled VAWTs is weak, while blockage effects play an important role in making available an increased momentum flux downstream. Such effects are more obvious at higher TSRs, corresponding to a larger dynamic solidity of the overall system. This result suggests that arranging turbines in staggered wind farms configurations – relative to the typical wind direction at a particular site – is beneficial in increasing the momentum flux available to rows of turbines located downstream.  相似文献   

3.
Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 152–155, March–April, 2009.  相似文献   

4.
Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.  相似文献   

5.
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.  相似文献   

6.
7.
利用CFD软件对麦克马斯特大学垂直轴风力机进行不同叶尖速比下的数值模拟,计算结果与风洞试验数据吻合良好。近场尾流中,与单叶片的风力机模拟结果比较,上游叶片产生并向下游延伸的旋涡影响下游运行轨道上叶片的升阻力特性,不仅使叶片扭矩输出峰值降低,而且峰值产生的时间延迟。对垂直轴风力机叶片叶梢进行修改,模拟结果显示,叶片扭矩输出峰值不变,但是谷值有所降低,修改后风力机沿风向推力幅值降低明显;远场尾流中,采用风速轮廓线原理,以瑞典的法尔肯贝里市200kW垂直轴风力机为原型,按照真实的空间排布进行数值模拟。模拟结果显示,上游风力机上下两端处产生较为集中的远场尾流,影响下游风力机叶片下半段的气动性能,下游风力机功率输出降低明显。  相似文献   

8.
The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle θ of the blade’s sections’ angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component.  相似文献   

9.
IntroductionOptimizationofvariousthermalpowerdevices (steamgenerators,heatexchangers ,etc .)anddevelopmentofthinfilmtechnologies(forexample ,withtheuseoftwo_phasejets)promptsmathematicalmodelingofnear_wallflowsofgas_dropletmixtures .Duetothegreatdiversityin…  相似文献   

10.
考虑S型与H型垂直轴风力机的特点,设计了一种新型升阻混合型垂直轴风力机,采用CFD法计算其启动与气动性能。结果表明,原始H型垂直轴风力机数值结果与试验值在各工况下吻合良好;新型升阻混合型垂直轴风力机不同方位角下的启动力矩均大于原始H型风力机,最小及最大值分别提升232%和83.3%;S型风轮输出功率随叶片重叠比增加而减小,完全重叠时输出功率基本为0;新型升阻混合型垂直轴风力机最大风能利用率为0.298,具有更复杂的流场特性。  相似文献   

11.
12.
On the basis of a numerical solution of the two-dimensional nonstationary Navier-Stokes equations in the Boussinesq approximation, mathematical modeling of laminar natural convection is carried out for a sinusoidal heat flux distribution on the side wall. For various values of the governing parameters, the spatial and temporal structure of the convective flow is analyzed in detail.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 66–72, March–April, 1996.  相似文献   

13.
基于随机脉动风场和随机波浪力场的谱表示降维模拟方法,采用脉动风速Davenport谱与波浪P-M谱对风、浪谱参数进行一体化构造,并应用相同的基本随机变量来保障风、浪模拟的概率信息一致,实现了随机风-浪一体化降维建模。进一步,基于ANSYS有限元软件建立了近海风机塔架数值计算模型,并以顶点位移为指标,进行了三种工况下结构的动力可靠度分析。数值算例验证了随机风-浪一体化降维建模方法的有效性。结构动力分析结果表明,风荷载对风机塔架顶点位移响应的影响占主导地位,同时波浪荷载的作用亦不可忽略。此外,随机风-浪一体化降维方法生成的代表性样本概率信息完备,可与概率密度演化理论结合实现海工结构在风浪共同作用下的精细化动力响应及可靠度分析。  相似文献   

14.
15.
16.
17.
The study of the dynamic behavior of a wind turbine with horizontal axis can be undertaken by various methods of analysis. The effects of the change of the aerodynamic flow (in the steady and unsteady cases), the variation of parameters of the cinematic movement (angle of attack, pitch angle and yaw angle) and the definition of subsystems characteristics that makes the wind turbine (blade, nacelle and pylon) allow one to characterize the structural dynamic behavior of the wind turbine. It is therefore necessary to develop these items. Once this is done, the structural dynamic behavior of the system can be improved. The term `improve' means the increase of the life duration by mastering the fatigue effects and the reduction of cost without sacrificing the aerodynamic output. The present study aims to examine the behavior of the blade, which is the main part of the wind turbine in that it that transmits forces to all other parts of the structure. The model is based on the theory of three-dimensional beams, under the assumption of variable sections of the type NACA 4415 airfoil, and takes into account membrane, transversal shear, flexion and free torsion effects. With regards to the aerodynamic loads (the lift, the drag and the pitching moment), a validation has been undertaken by considering experimental data and numerical results obtained by a CFD code (Fluent). The forces are obtained by means of a parametric CAD method interpolation of the aerodynamic poles by Bézier patch under geometrical constraints solved by a Simplex type algorithm. The emphasis is put on dynamic aspects by a complete processing of the dynamic equilibrium equation, applied to the wind turbine blade with horizontal axis.  相似文献   

18.
A mathematical model is examined to describe the transport of salts by coupled flows of surface, soil, and subsoil waters for large-scale objects characterized by complex hydrogeologic conditions. Computational algorithms and computer programs developed for realization of the model are based on the use of finite-difference methods to distinguish between different physical processes and modeling regions. Results are presented from examples of calculations to illustrate characteristic features of the problem of mass transfer by coupled flows. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 118–126, July–August, 1998.  相似文献   

19.
The convective coherent structures in a plane horizontal fluid layer, heated from below and capable of rotation about the vertical axis, are experimentally investigated. It is shown that with increase in the supercriticality the time it takes for the convective structures to be formed decreases sharply. Rotation and an increase in the layer thickness-to-diameter ratio lead to an increase in the steady-state attainment time.  相似文献   

20.
This work investigates the transient behavior of high gas fraction gas-liquid flows in vertical pipes (annular and churn flows). Hyperbolic balance equations for mass, momentum and entropy are written for the gas and liquid, which is split between a continuous film and droplets entrained in the gas core. Closure relationships to calculate the wall and interfacial friction and the rates of droplet entrainment and deposition were obtained from the literature. A finite-difference solution algorithm based on a coefficient matrix splitting method was implemented to deal with sharp variations in the spatial and temporal domains, such as pressure and phase holdup waves. The model results were compared with steady-state experimental data from eight different sources, totaling more than 1500 data points for pressure gradient, liquid film flow rate and void/core fraction. The absolute average deviation between the model and the data was 17% for the pressure gradient and 5.8% for the void fraction. A comparison of the model results with fully transient air-water data generated in a 49-mm ID, 42-m long vertical pipe is also presented. The experimental results consist of two outlet pressure-induced and two inlet mass flow rate-induced transient tests. Two main transient parameters are compared, namely the local void fraction and the pressure difference between selected points along the test section and the outlet (taken as a reference). The comparisons between the experiments and the numerical model indicate that the model was capable of describing the transient annular to churn flow transition with absolute average deviations of 14.5% and 7.9% for the pressure difference and void fraction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号