首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Although recent advances in fabrication technologies have allowed the realization of highly accurate nanometric devices and systems, most approaches still lack uniformity and mass-production capability sufficient for practical use. We have previously demonstrated a novel technique for autonomously coupling heterogeneous quantum dots to induce particular optical responses based on a simple phonon-assisted photocuring method in which a mixture of quantum dots and photocurable polymer is irradiated with light. The cured polymer sequentially encapsulates coupled quantum dots, forming what we call a nanophotonic droplet. Recently, we found that each quantum dot in the mixture is preferably coupled with other quantum dots of similar size due to a size resonance effect of the optical near-field interactions between them. Moreover, every nanophotonic droplet is likely to contain the same number of coupled quantum dots. In this paper, we describe the basic mechanisms of autonomously fabricating nanophotonic droplets, and we examine the size- and number-selectivity of the quantum dots during their coupling process. The results from experiments show the uniformity of the optical properties of mass-produced nanophotonic droplets, revealed by emission from the contained coupled quantum dots, due to the fundamental characteristics of our method.  相似文献   

2.
We theoretically demonstrate optical pulsation based on optical near-field interactions between quantum nanostructures. It is composed of two quantum dot systems, each of which consists of a combination of smaller and larger quantum dots, so that optical excitation transfer occurs. With an architecture in which the two systems take the role of a timing delay and frequency up-conversion, we observe pulsation in populations pumped by continuous-wave light irradiation. The pulsation is induced with suitable setting of parameters associated with the optical near-field interactions. This will provide critical insights toward the design and implementation of experimental nanophotonic pulse generating devices.  相似文献   

3.
We propose a novel method of coupling heterogeneous quantum dots at fixed distances and capsulating the coupled quantum dots by utilizing nanometric local curing of a photo-curable polymer caused by multistep electronic transitions based on a phonon-assisted optical near-field process between quantum dots. Because the coupling and the capsulating processes are triggered only when heterogeneous quantum dots floating in a solution closely approach each other to induce optical near-field interactions between them, the distances between the coupled quantum dots are physically guaranteed to be equal to the scale of the optical near fields. To experimentally verify our idea, we fabricated coupled quantum dots, consisting of CdSe and ZnO quantum dots and a UV-curable polymer. We also measured the photoluminescence properties due to the quantum-dot coupling and showed that the individual photoluminescences from the CdSe and ZnO quantum dots exhibited a trade-off relationship.  相似文献   

4.
We propose and demonstrate the operation of a nanometric optical NOT gate using CuCl quantum dots coupled via an optical near-field interaction. The device was smaller than 20 nm and its repeated operation was verified. The operating energy of this device was much lower than that of a conventional photonic device. We also introduce all-optical NAND and NOR gates using coupled quantum dots. Toward an actual nanophotonic device, we discuss the possibility of coupled InAlAs quantum dots. A double layer of InAlAs quantum dots for nanophotonic device operation was prepared using molecular beam epitaxial growth. We obtained a near-field spectroscopy signal, indicating that the InAlAs quantum dots coupled with the optical near field acted as a NOT gate. The experimental results show that the sample has great potential as an actual nanophotonic device. PACS 78.67.Hc; 07.79.Fc; 42.79.Ta  相似文献   

5.
蒋涛  陆林广  陆伟刚 《物理学报》2013,62(22):224701-224701
运用一种改进光滑粒子动力学(SPH)方法模拟了相溶和不相溶两种情况下的等直径微液滴碰撞动力学过程. 为提高传统SPH方法的数值精度和稳定性, 采用一种不涉及核导数计算的核梯度改进形式; 为处理液滴界面张力采用修正的van der Waals表面张力模型. 通过模拟牛顿液滴碰撞聚并变形过程并与相关文献或试验结果进行对比, 验证了改进SPH 方法模拟微液滴碰撞过程的可靠性. 随后, 研究了基于van der Waals模型相溶聚合物微液滴碰撞聚并变形过程及不相溶微液滴碰撞后的反弹、分离过程, 讨论了碰撞过程中碰撞速度、碰撞角度、密度比等参数对碰撞变形过程的影响, 分析了流体桥、旋转角度等因素的变化情况. 关键词: 光滑粒子动力学 微液滴 聚合物液滴 碰撞  相似文献   

6.
纳米光子学的最新进展   总被引:2,自引:0,他引:2  
明海  陈博  李晴  唐麟  王沛 《物理》2004,33(9):636-640
论述了纳米光子学的最新进展,介绍了国际上的一些研究小组所做的关于纳米光子学的实验,包括纳米开关、近场光学探针技术、近场光化学气相沉积制备、基于等离子体激元波导实现的远近场能量的转换装置等内容,着重阐明实验原理和纳米制备技术中的一些关键问题。  相似文献   

7.
Naruse M  Hori H  Kobayashi K  Ohtsu M 《Optics letters》2007,32(12):1761-1763
We present tamper resistance in optical excitation transfer via optical near-field interactions based on the energy dissipation process occurring locally in nanometric devices such as quantum dots. A theoretical comparison with electrical systems is also shown, focusing on the required environmental conditions. Numerical simulations based on virtual photon models demonstrate high tamper resistance.  相似文献   

8.
Motivated by the fabrication potential of multi-walled carbon nanotube structures, we numerically investigated a paired structure consisting of two metallic spheres each grown on one end of a multi-walled nanotube. The paired two-segmented structure is capable to convert free-space radiation into an intense near-field, and, hence, acting as an optical antenna. Vice versa the presence of the two nanotubes enable a current source at the antenna feed to more efficiently energy into the radiation modes, resulting e.g. in correspondingly altered luminescence lifetimes when an excited single molecule is placed in the feed point. Furthermore, the structure represents a mean to localize light on a sub-wavelength scale within different materials, which is interesting in the context of a fabrication technology for integrated nanophotonic components with different material combinations. The optical properties of the nano-antenna are analyzed by means of numerical simulations using the finite element method. Our investigations have revealed that the field enhancement, the resonances, and the radiation patterns can be easily tuned since all these quantities strongly depend on the size of the nanotubes and the metallic spheres, as well as on their material properties The structure we propose here carries a great potential for bio-sensing, for tip-enhanced spectroscopy applications, and for interfacing integrated photonic nano circuits.  相似文献   

9.
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.  相似文献   

10.
A nanoscale data summation architecture is proposed and experimentally demonstrated based on the optical near-field interaction between quantum dots. Based on local electromagnetic interactions between a few nanometric elements via optical near fields, we can combine multiple excitations at a certain quantum dot, which allows construction of a summation architecture. Summation plays a key role for content-addressable memory, which is one of the most important functions in optical networks.  相似文献   

11.
In this work, we investigated the optical properties of a novel compositional configuration of gold nanorod and silver nanoshell which is embedded in a SiO2 substance. The proper geometrical sizes for compositional rod/shell arrangement have been obtained based on the position and peak of plasmon resonance at λ ~1550 nm. Adjusting the plasmon resonance position at declared spectrum helps us to provide an arrangement which shows high efficiency and minimum losses. The influence of destructive components such as internal damping and scattering on the rod/shell combination is demonstrated by corresponding diagrams. Moreover, we proposed a nano-array based on examined configuration and the quality of light transmission along the array is studied. We figured out and depicted optical properties of the array such as transmission loss factors, group velocities, transmitted power, transmission quality, and two-dimensional snapshots of surface plasmons (SPs) coupling between nanoparticles arrangements under transverse and longitudinal modes excitations. Ultimately, it is shown that the suggested nanostructure based on studied nanoparticles configuration has a potential to utilize in designing nanophotonic devices such as splitters, couplers, and routers. Finite-difference time-domain method (FDTD) as a major simulation model has been employed to study the features of the waveguide.  相似文献   

12.
13.
Surface plasmon polariton propagation in nanoscale metal gap waveguides   总被引:1,自引:0,他引:1  
Wang B  Wang GP 《Optics letters》2004,29(17):1992-1994
Based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs) in optical circuits made from metal gap waveguides (MGWs) with nanometric gap widths, we theoretically demonstrate that two structures that consist of splitting and recombining MGWs and of coupling MGWs can be used as nanoscale Mach-Zehnder interferometers. MGW arrays show capabilities for array imaging and for controlling the flow of SPPs. Other potential applications of coupling MGWs, as SPP switches, directional couplers, and even as a nanoscale counterpart for observing linear and nonlinear dynamic behavior of electromagnetic fields, are also predicted and discussed. Our results point to an interesting way to manipulate optical signals and provide efficient sensing in nanophotonic architectures.  相似文献   

14.
Huang Q  Zhang X  Xia J  Yu J 《Optics letters》2011,36(23):4494-4496
We propose and experimentally demonstrate a dual-band optical filter based on a single microdisk resonator. An analytical model is built based on the transfer matrix method and is applied to simulate the properties of such a device. Competition and interference of the dual modes in the resonator lead to dual-band filtering with high isolation. As the finite-difference time-domain simulation illustrates, two low-order resonant modes can be effectively triggered by optimizing the waveguide width and spacing gap between the compact resonator and waveguides. In experiment, a double side-coupled microdisk resonator was fabricated on a nanophotonic silicon-on-insulator platform, and dual-band bandpass filtering is realized with an optical isolation higher than 20 dB and an insertion loss lower than 2 dB. The experimental results agree well with our modeling results.  相似文献   

15.
表面等离子体激元纳米集成光子器件   总被引:4,自引:0,他引:4  
汪国平 《物理》2006,35(6):502-507
纳米集成光子学的核心关键技术之一在于新型高效纳米光耦合器、纳米光波导等纳米光子器件的设计与制备.表面等离子体激元(SPPs)是由外部电磁场与金属表面自由电子相互作用形成的一种相干共振,除具有巨大的局部场增强效应外,还具有将激发电磁场能量限制在纳米尺度范围的特点.基于SPPs的各种纳米光子器件被誉为当今最有希望的纳米全光集成回路的基础,成为目前国际上的一个研究热点.文章对基于SPPs的纳米集成光子器件的最新研究进展和研究成果进行评述。  相似文献   

16.
董琪琪  胡海豹  陈少强  何强  鲍路瑶 《物理学报》2018,67(5):54702-054702
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.  相似文献   

17.
Solute-solvent collisions for a two-level molecular system interacting with a four-wave mixing signal are analyzed in the present contribution. The system is described using the optical stochastic Bloch equations (OSBE), where Bohr’s frequency is treated a stochastic variable due to the random collisions with the solvent. The resulting equations for the Fourier components associated to the coherence are averaged over all the realizations of the stochastic variable, using an approximant for the Voigt’s function as a probability distribution. In this model we were able to calculate the optical susceptibilities at different frequencies, depicted as numerical surfaces for the behavior of the optical properties.  相似文献   

18.
A technique based on optical operations on moiré patterns for image encryption and decryption is developed. In this method, an image is encrypted by a stochastic geometric moiré pattern deformed according to the image reflectance map. The decryption is performed using pixel correlation algorithm in the encrypted image and the stochastic geometrical moiré pattern. The proposed technique has a number of advantages over existing encryption techniques based on moiré gratings. No original moiré grating can be reconstructed only from the encrypted image. Stochastic moiré grating can be deformed in any direction what is an important factor of encryption security. Finally, the quality of the decrypted image is much better compared to decryption methods based on the superposition of the regular and deformed moiré gratings. The proposed technique has a great potential, because the process is performed using computational algorithms based on optical operations and optical components are avoided.  相似文献   

19.
张晓青  贺号  胡明列  颜鑫  张霞  任晓敏  王清月 《物理学报》2013,62(7):76102-076102
本文基于有限元法研究了直立生长于GaAs衬底的GaAs纳米线的光场响应和光场增强性质. 实验使用多个波长的飞秒激光脉冲激发GaAs纳米线, 测得了较高效率的二次谐波信号, 并首次使用宽带超连续飞秒脉冲 (1000–1300 nm) 在纳米线上获取了宽带、无杂散荧光噪声的二次谐波信号. 这种高效的二次谐波产生过程主要归因于纳米结构引起的局域场增强效应. 本文阐明了GaAs纳米线的二次谐波倍频特性, 这些结果对于其在纳米光学中的光器件、 光集成等领域的进一步研究和实际应用具有很好的参考价值. 关键词: GaAs纳米线 二次谐波 飞秒激光  相似文献   

20.
This paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号