首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel Pt/Au/C catalyst was prepared by depositing the Pt and Au nanoparticles on the carbon support. The synthesized catalysts were characterized by energy-dispersive X-ray (EDX) and transmission electron microscopy (TEM), and electrochemically analyzed for activity towards oxygen-reduction reaction and methanol oxidation reaction. EDX and TEM results reveal that Pt nanoparticles supported on carbon supports were separated by Au nanoparticles. The electrochemical analysis indicate that the novel catalyst showed the enhanced methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction, which could be attributed to the less methanol adsorption on Pt/Au/C catalyst.  相似文献   

2.
The dynamic behavior and kinetics of the structural transformation of supported bimetallic nanoparticle catalysts with synergistic functions in the oxidation process are fundamental issues to understand their unique catalytic properties as well as to regulate the catalytic capability of alloy nanoparticles. The phase separation and structural transformation of Pt(3)Sn/C and PtSn/C catalysts during the oxidation process were characterized by in situ time-resolved energy-dispersive XAFS (DXAFS) and quick XAFS (QXAFS) techniques, which are element-selective spectroscopies, at the Pt L(III)-edge and the Sn K-edge. The time-resolved XAFS techniques provided the kinetics of the change in structures and oxidation states of the bimetallic nanoparticles on carbon surfaces. The kinetic parameters and mechanisms for the oxidation of the Pt(3)Sn/C and PtSn/C catalysts were determined by time-resolved XAFS techniques. The oxidation of Pt to PtO in Pt(3)Sn/C proceeded via two successive processes, while the oxidation of Sn to SnO(2) in Pt(3)Sn/C proceeded as a one step process. The rate constant for the fast Pt oxidation, which was completed in 3 s at 573 K, was the same as that for the Sn oxidation, and the following slow Pt oxidation rate was one fifth of that for the first Pt oxidation process. The rate constant and activation energy for the Sn oxidation in PtSn/C were similar to those for the Sn oxidation in Pt(3)Sn/C. In the PtSn/C, however, it was hard for Pt oxidation to PtO to proceed at 573 K, where Pt oxidation was strongly affected by the quantity of Sn in the alloy nanoparticles due to swift segregation of SnO(2) nanoparticles/layers on the Pt nanoparticles. The mechanisms for the phase separation and structure transformation in the Pt(3)Sn/C and PtSn/C catalysts are also discussed on the basis of the structural kinetics of the catalysts themselves determined by the in situ time-resolved DXAFS and QXAFS.  相似文献   

3.
Electrochemical adsorption of SO(2) on platinum is complicated by the change in sulfur oxidation state with potential. Here, we attempt to identify SO(2) adsorption products on catalyst coated membranes (CCMs) at different electrode potentials using a combination of in situ sulfur K-edge XANES (X-ray absorption near-edge structure) spectroscopy and electrochemical techniques. CCMs employed platinum nanoparticles supported on Vulcan carbon (Pt/VC). SO(2) was adsorbed from a SO(2)/N(2) gas mixture while holding the Pt/VC-electrode potential at 0.1, 0.5, 0.7, and 0.9 V vs a reversible hydrogen electrode (RHE). Sulfur adatoms (S(0)) are identified as the SO(2) adsorption products at 0.1 V, while mixtures of S(0), SO(2), and sulfate/bisulfate ((bi)sulfate) ions are suggested as SO(2) adsorption products at 0.5 and 0.7 V. At 0.9 V, SO(2) is completely oxidized to (bi)sulfate ions. The identity of adsorbed SO(2) species on Pt/VC catalysts at different electrode potentials is confirmed by modeling of XANES spectra using FEFF8 and a linear combination of experimental spectra from sulfur standards. Results on SO(2) speciation gained from XANES are used to compare platinum-sulfur electronic interactions for Pt(3)Co/VC versus Pt/VC catalysts in order to understand the difference between the two catalysts in terms of SO(2) contamination.  相似文献   

4.
This work demonstrates the outstanding performance of alloyed Au_1 Pt_1 nanoparticles on hydrogen oxidation reaction(HOR) in alkaline solution. Due to the weakened hydrogen binding energy caused by uniform incorporation of Au, the alloyed Au_1 Pt_1/C nanoparticles exhibit superior HOR activity than commercial Pt Ru/C. On the contrary, the catalytic performance of the phase-segregated Au_2 Pt_1/C and Au_1 Pt_1/C bimetallic nanoparticles in HOR is significantly worse. Moreover, Au_1 Pt_1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles, while performance attenuation of commercial Pt Ru/C is high up to 15% under the same condition. Our results indicate that the alloyed Au_1 Pt_1/C is a promising candidate to substitute commercial Pt Ru/C for hydrogen oxidation reaction in alkaline electrolyte.  相似文献   

5.
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile. Most importantly, the hollow bimetallic nanospheres (Au/Pt and Pd/Pt) obtained here exhibit an area of greater electrochemical activity than other Pt hollow or solid nanospheres. In addition, the approximately 6 nm hollow urchinlike Pt nanospheres can achieve a potential of up to 0.57 V for oxygen reduction, which is about 200 mV more positive than that obtained by using a approximately 6 nm Pt nanoparticle modified glassy carbon (GC) electrode. Rotating ring-disk electrode (RRDE) voltammetry demonstrates that approximately 6 nm hollow Pt nanospheres can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated H(2)SO(4) (0.5 M). Finally, compared to the approximately 6 nm Pt nanoparticle catalyst, the approximately 6 nm hollow urchinlike Pt nanosphere catalyst exhibits a superior electrocatalytic activity toward the methanol oxidation reaction at the same Pt loadings.  相似文献   

6.
CO oxidation and decomposition behaviors over nanosized 3% Au/alpha-Fe2O3 catalyst and over the alpha-Fe2O3 support were studied in situ via thermogravimetry coupled to on-line FTIR spectroscopy (TG-FTIR), which was used to obtain temperature-programmed reduction (TPR) curves and evolved gas analysis. The catalyst was prepared by a sonication-assisted Au colloid based method and had a Au particle size in the range of 2-5 nm. Carburization studies of H 2-prereduced samples were also made in CO gas. According to gravimetry, for the 3% Au/alpha-Fe2O3 catalyst, there were three distinct stages of CO interaction with the Au catalyst but only two stages for the catalyst support. At low temperatures (相似文献   

7.
PtRu nanoparticles supported on Vulcan XC-72 carbon and carbon nanotubes were prepared by a microwave-assisted polyol process. The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which were uniformly dispersed on carbon, were 2-6 nm in diameter. All PtRu/C catalysts prepared as such displayed the characteristic diffraction peaks of a Pt face-centered cubic structure, excepting that the 2theta values were shifted to slightly higher values. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The electro-oxidation of methanol was studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both PtRu/C catalysts had high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a direct methanol fuel cell single stack test cell using the Vulcan-carbon-supported PtRu alloy as the anode catalyst showed high power density.  相似文献   

8.
The carbon monoxide (CO) sensitivity of a mixed-potential-type yttria-stabilized zirconia (YSZ)-based tubular-type sensor utilizing a ZnCr(2)O(4) sensing electrode (SE) was tuned by the addition of different precious metal nanoparticles (Ag, Au, Ir, Pd, Pt, Ru and Rh; 1 wt % each) into the sensing layer. After measuring the electromotive force (emf) response of the fabricated SEs to 100 ppm of CO against a Pt/air-reference electrode (RE), the ZnCr(2)O(4)-Au nanoparticle composite electrode (ZnCr(2)O(4)(+Au)-SE) was found to give the highest response to CO. A linear dependence on the logarithm of CO concentration in the range of 20-800 ppm at an operational temperature of 550 °C under humid conditions (5 vol % water vapor) was observed. From the characterization of the ZnCr(2)O(4)(+Au)-SE, we can conclude that the engineered high response toward CO originated from the specific properties of submicrometer sized Au particles, formed via the coalescence of nanosized Au particles located on ZnCr(2)O(4) grains, during the calcining process at 1100 °C for 2 h. These particles augmented the catalytic activities of the gas-phase CO oxidation reaction in the SE layer, as well as to the anodic reaction of CO at the interface; while suppressing the cathodic reaction of O(2) at the interface. In addition, the response of the ZnCr(2)O(4)(+Au)-SE sensor toward 100 ppm of CO gradually increased throughout the 10 days of operation, and plateaued for the remainder of the month that the sensor was examined. Correlations between SEM observations and the CO sensing characteristics of the present sensor were suggestive that the sensitivity was mostly affected by the morphology of the Au particles and their catalytic activities, which were in close proximity to the ZnCr(2)O(4) grains. Furthermore, by measuring the potential difference (emf) between the ZnCr(2)O(4)(+Au) and a ZnCr(2)O(4) electrode, sensitivities to typical exhaust component gases other than CO were found to be negligible at 550 °C.  相似文献   

9.
Platinum and ruthenium nanoparticles that are uniformly dispersed on multiwalled carbon nanotubes (MWNTs) were synthesized by vacuum pyrolysis using Pt(acac)2 and Ru(acac)3 as the metal precursors. The resulting nanocomposites were characterized by transmission electron microscopy and X-ray diffraction. The Pt, Pt45Ru55, and Ru nanoparticles had mean diameters of 3.0 +/- 0.6, 2.7 +/- 0.6, and 2.5 +/- 0.4 nm and the same mole number as their metal precursors at 500 degrees C. The electrocatalytic activity of the Pt/MWNTs and PtRu/MWNTs was investigated at room temperature by cyclic voltammetry and chronoamperometry. All of the electrochemical results showed that the PtRu/MWNTs exhibited a high level of catalytic activity for methanol oxidation as a result of the large surface area of the supporting carbon nanotubes and the wide dispersion of the Pt and Ru nanoparticles. Compared with the Pt/MWNTs, the onset potential for methanol oxidation of the PtRu/MWNTs was significantly lower, and the ratio of the forward anodic peak current to the reverse anodic peak current during methanol oxidation was somewhat higher. The Pt45Ru55/MWNTs displayed the best electrocatalytic activity of all of the carbon-nanotube-supported Pt and PtRu catalysts.  相似文献   

10.
Nanostructured PtRu/C catalysts have been prepared from a water-in-oil pseudomicroemulsion with the aqueous phase of a mixed concentrated solution of H(2)PtCl(6), RuCl(3), and carbon powder, oil phase of cyclohexane, ionic surfactant of sodium dodecylbenzene sulfonate (C(18)H(29)NaO(3)S), and cosurfactant n-butanol (C(4)H(10)O). Two different composing PtRu/C nanocatalysts (catalyst 1, Pt 20 wt %, Ru 15 wt %; catalyst 2, Pt 20 wt %, Ru 10 wt %) were synthesized. The catalysts were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the particles were found to be nanosized (2-4 nm) and inherit the Pt face-centered cubic structure with Pt and Ru mainly in the zero valance oxidation state. The ruthenium oxide and hydrous ruthenium oxide (RuO(x)()H(y)()) were also found in these catalysts. The cyclic voltammograms (CVs) and chronoamperometries for methanol oxidation on these catalysts showed that catalyst 1 with a higher Ru content (15 wt %) has a higher and more durable electrocatalytic activity to methanol oxidation than catalyst 2 with low Ru content (10 wt %). The CV results for catalysts 1 and 2 strongly support the bifunctional mechanism of PtRu/C catalysts for methanol oxidation. The data from direct methanol single cells using these two PtRu/C as anode catalysts show the cell with catalyst 1 has higher open circuit voltage (OCV = 0.75 V) and maximal power density (78 mW/cm(2)) than that with catalyst 2 (OCV = 0.70 V, P(max) = 56 mW/cm(2)) at 80 degrees C.  相似文献   

11.
Platinum–ruthenium (Pt–Ru) nanoparticles were successfully deposited, for the first time, on the surface of SnO2 nanowires grown directly on carbon paper (Pt–Ru/SnO2 NWs/carbon paper) by potentiostatic electrodeposition method. The resultant Pt–Ru/SnO2 NWs/carbon paper composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic activities of these composite electrodes for methanol oxidation were investigated and higher mass and specific activities in methanol oxidation were exhibited as compared to Pt–Ru catalysts deposited on glassy carbon electrode.  相似文献   

12.
We have developed efficient electrocatalysts for methanol oxidation using new synthetic method facilitating deposition of Pt–Ru very thin nanoplatelets on carbon nanoparticles The method involves oxidation of carbon support, adsorption of Pb2+, its reduction and galvanic displacement of Pb0 by Pt and/or Ru. The Pt mass activity of this catalyst is about 10 times higher than that of the commercial Pt–Ru/C. The catalyst with the 1:1 Pt/Ru ratio displayed the highest methanol oxidation activity per surface Pt atom. Our results demonstrate the new synthetic method that yields the catalyst with potential for solving the problem of high Pt loading in direct methanol fuel cell anodes.  相似文献   

13.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

14.
The electrocatalytic and analytical ability to glucose on a highly dispersed Pt nanoparticles supported on active carbon (Pt/C) modified electrode was investigated. The Pt/C nanocomposite was synthesized using a microwave method. The structural characterization and surface morphology of the prepared Pt/C nanocomposite was examined using X-ray diffraction, energy-dispersive X-ray, scanning and transmission electron microscopy. The results show that the Pt nanoparticles with 3–10 nm in diameter are well dispersed on the surface of active carbon. The electrocatalytic and analytical ability of Pt nanoparticles supported on active carbon modified electrode (Pt/C/GCE) was studied using cyclic voltammetry (CV) and chronoamperommetry. The Pt/C/GCE exhibits strong electrocatalytic activity to the glucose oxidation. Under optimal conditions, the Pt/C/GCE performed a current response towards glucose oxidation at a broad concentration range from 0.05 to 11.95 mM. Two linear regions could be observed at 0.05 to 3.5 mM with a sensitivity of 1.29 μA mM–1 cm–2 and at 3.5 to 11.95 mM with a sensitivity of 0.85 μA mM–1 cm–2, respectively. The Pt/C/GCE exhibits sufficient sensitivity and abilities of anti-interference.  相似文献   

15.
The preferential oxidation (PROX) of CO in the presence of H(2) is an important step in the production of pure H(2) for industrial applications. In this report, two sonochemical methods (S1 and S2) were used to prepare highly dispersed Ru catalysts supported on mesoporous TiO(2) (TiO(2)(MSP)) for the PROX reaction, in which a reaction gas mixture containing 1% CO + 1% O(2) + 18% CO(2) + 78% H(2) was used. The supported Ru catalysts performed better than the supported Au and Pt catalysts, and the S1 and S2 methods are superior to the impregnation method. The Ru/TiO(2)(MSP) catalysts were active for the PROX reaction below 200 °C and good for the methanation reactions of CO and CO(2) above 200 °C. The presence of residual chlorine in the catalysts severely suppressed their PROX reaction activity, and a higher dispersion of Ru particles led to better catalytic performances. The addition of Au in the Ru/TiO(2)(MSP) catalyst also caused a poorer catalytic activity for both the PROX and the methanation reactions. TPR results showed that in the active catalysts prepared by the S1 and S2 methods, the well dispersed Ru particles, after calcination in air, had a stronger interaction with the support than those in the catalyst prepared by the impregnation method and in the Au-Ru/TiO(2)(MSP) catalyst. In situ CO absorption experiments performed with the diffusion reflectance Fourier transform infra red (DRIFT) method showed that the bridged adsorbed CO species on isolated Ru(0) sites correlated with the catalytic performances, indicating that these isolated Ru(0) sites are the most active sites of the Ru/TiO(2)(MSP) catalysts in the PROX reaction.  相似文献   

16.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

17.
Pt/C和Pt/CNTs电极的电化学稳定性研究   总被引:1,自引:0,他引:1  
邵玉艳  尹鸽平  高云智 《化学学报》2006,64(16):1752-1756
采用恒电位氧化法研究了Pt/C和Pt/CNTs电极的电化学稳定性. 相同条件下, Pt/C电极的氧化电流大约为Pt/CNTs电极的2倍; 120 h氧化后, Pt/C电极Pt的电化学表面积下降了21.3%, 而Pt/CNTs电极仅下降了7.6%, 表明Pt/CNTs电极性能衰减较慢. X射线光电子能谱(XPS)分析表明, Pt/C的载体碳黑表面氧增加量大于Pt/CNTs中碳纳米管(CNTs)表面氧的增加量, 说明碳黑的被氧化程度较高, 电化学稳定性差; Pt的表面化学状态没有发生变化; 碳纳米管本身的抗电化学氧化性也大于碳黑. 所以, 载体的被氧化程度不同是两种电极性能衰减不同的主要原因之一, 并且排除了Pt表面状态的影响.  相似文献   

18.
Pt and Au nanoparticles with controlled Pt?:?Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt?:?Au ratio of 1?:?8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt?:?Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions.  相似文献   

19.
K. Kinoshita   《Thermochimica Acta》1977,20(3):297-308
The reactions between Pt oxides and carbon black in helium and air were examined by DTA. The thermograms were dependent on the mode of sample preparation. 20 wt.% PtO2 supported on carbon catalyst heated in He at 10°C min−1 produced an exotherm at approximately 400°C. Physical mixtures of PtO2 and carbon only reacted at a higher temperature (approximately 550°C) in He where PtO2 is thermally decomposed to Pt and O2. In air, Pt catalyzed the oxidation of cabon in the 20 wt.%Pt supported on carbon sample. On the other hand, PtO2 in the physical mixture did not appear to catalyze the oxidation of carbon in air. This difference in behavior is explained by assuming that atomic oxygen is produced in the supported catalyst sample which reacts at low temperature with carbon. In the physical mixture, thermal decomposition of PtO2 yields molecular oxygen which reacts with carbon at a higher temperature than does atomic oxygen.  相似文献   

20.
Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated. The catalytic current density decreased approximately as MeOH≈EG>FA. Result revealed that BPPGE‐fMWCNT‐Pt/Ru tolerates CO poisoning for FA electrooxidation than when used for the oxidation of the EG or MeOH. Electrochemical impedance spectra are dependent on the oxidation potentials, with equivalent circuit models characteristic of adsorption‐controlled charge transfer kinetics. The results provide important insights into the electrochemical response of these small organic molecules useful in fuel cell technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号