首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Several novel nucleoside analogues as potential inhibitors of glycosidases and purine nucleoside phosphorylase (PNP) have been synthesized via selective coupling of an appropriate nucleobase at different positions of an orthogonally protected imino sugar as a common precursor. This synthetic strategy offers a straightforward protocol for the assembly of imino sugar containing nucleosides, establishing a new repertoire of molecules as potential therapeutics.  相似文献   

2.
6-Aminopyridin-2-ones form Watson-Crick pairs with complementary purine analogues to add a third nucleobase pair to DNA and RNA, if an electron-withdrawing group at position 5 slows oxidation and epimerization. In previous work with a nucleoside analogue trivially named dZ, the electron withdrawing unit was a nitro group. Here, we describe an analogue of dZ (cyano-dZ) having a cyano group instead of a nitro group, including its synthesis, pK(a), rates of acid-catalyzed epimerization, and enzymatic incorporation.  相似文献   

3.
Analogues of N,N-dimethyladenine exploiting both thieno-and isothiazolo-pyrimidine cores were modified with 3-subsituted azetidines to yield visibly emissive and responsive fluorophores. The emission quantum yields, among the highest seen for purine analogues (0.64 and 0.77 in water and dioxane respectively), correlated with the Hammett inductive constants of the substituents on the azetidine ring. Ribosylation of the difluoroazetidino-modified nucleobase yielded an emissive nucleoside that displayed a substantially lower emission quantum yield in water, compared to the precursor nucleobase. Importantly, high emission quantum yield was restored in deuterium oxide, which highlights the potential impact of the sugar moiety on the photophysical features of fluorescent nucleosides, a functionality usually considered non-chromophoric and photophysically benign.  相似文献   

4.
Despite the fact that COVID-19 vaccines are already available on the market, there have not been any effective FDA-approved drugs to treat this disease. There are several already known drugs that through drug repositioning have shown an inhibitory activity against SARS-CoV-2 RNA-dependent RNA polymerase. These drugs are included in the family of nucleoside analogues. In our efforts, we synthesized a group of new nucleoside analogues, which are modified at the sugar moiety that is replaced by a quinazoline entity. Different nucleobase derivatives are used in order to increase the inhibition. Five new nucleoside analogues were evaluated with in vitro assays for targeting polymerase of SARS-CoV-2.  相似文献   

5.
Two oxadiazole carboxamide deoxyribonucleoside analogues are described that can be incorporated and efficiently extended by Taq DNA polymerase. The primer strand extension beyond oxadiazole nucleoside analogues occurs at rates similar to the values observed for the canonical Watson-Crick base pairs irrespective of the template nucleobase. These distinctive chemical effects in DNA polymerase extensions are attributed to the smaller size and unique electronic properties of the oxadiazole nucleobase.  相似文献   

6.
7.
A simple facile synthesis of substituted purine derivatives has been developed by using Mitsunobu conditions for an alcohol and a respective nucleobase. A wide range of alcohols produces good to excellent yield (>90%). The resulting purine analogues show good regioselectivity with N-9 substitution as the dominant products in most of the cases. Application of diastereospecific alcohols reveals a complete inversion of the carbon stereogenic center giving a single diastereomer. More than two dozen novel nucleobase derivatives have been prepared in high yield.  相似文献   

8.
The nucleoside boranophosphates, having one of the nonbridging phosphate oxygens substituted with a borane (BH(3)) group, have shown potential therapeutical applications as aptamers, antisense agents, and antiviral prodrugs. An oxathiaphospholane approach, which does not require exocyclic amine protection of the nucleobase, has been successfully developed to efficiently synthesize 5'-P(alpha)-boranodiphosphates of 2'-deoxythymidine, adenosine, guanosine, and uridine. The approach involves a key intermediate, the borane complex of nucleoside 5'-O-1,3,2-oxathiaphospholane 16, that undergoes a ring-opening reaction catalyzed by 1,4-diazabicyclo[5.4.0]-undec-7-ene to form the protected nucleoside 5'-P(alpha)-boranodiphosphate 18. Treatment of 18 with ammonium hydroxide yielded diastereoisomeric mixtures of nucleoside 5'-P(alpha)-boranodiphosphates 5. This oxathiaphospholane approach ensures the availability of nucleoside 5'-P(alpha)-boranodiphosphate analogues needed for antiviral drug research.  相似文献   

9.
Greco NJ  Tor Y 《Tetrahedron》2007,63(17):3515-3527
The synthesis and photophysical evaluation of modified nucleoside analogues in which a five-membered heterocycle (furan, thiophene, oxazole, and thiazole) is attached to the 5-position of 2′-deoxyuridine are reported. The furan-containing derivative is identified as the most promising responsive nucleoside of this family due to its emission quantum efficiency and degree of sensitivity to its microenvironment. The furan moiety was then attached to the 5-position of 2′-deoxycytidine as well as the 8-position of adenosine and guanosine. Photophysical evaluation of these four furan-containing nucleoside analogues reveals distinct differences in the absorption, emission, and quantum efficiency depending upon the class of nucleoside (pyrimidine or purine). Comparing the photophysical properties of all furan-containing nucleosides, identifies the furan thymidine analogue, 5-(fur-2-yl)-2′-deoxyuridine, as the best candidate for use as a responsive fluorescent probe in nucleic acids. 5-(Fur-2-yl)-2′-deoxyuridine was then converted to the corresponding phosphoramidite and site specifically incorporated into DNA oligonucleotides with greater than 88% coupling efficiency. Such furan-modified oligonucleotides form stable duplexes upon hybridization to their complementary DNA strands and display favorable fluorescent features.  相似文献   

10.
A substantial fraction of mutations that arise in the cell comes from oxidative damage to DNA bases. Oxidation of purine bases at the 8-position, yielding 8-oxo-G and 8-oxo-A, results in conformational changes (from anti to syn) that cause miscoding during DNA replication. Here we describe the synthesis and biophysical and biochemical properties of low-polarity shape mimics of 8-oxopurines, and we report that these new analogues exhibit remarkable mimicry of the mutagenic properties of the natural damaged bases. A 2-chloro-4-fluoroindole nucleoside (1) was designed as an isosteric analogue of 8-oxo-dG, and a 2-chloro-4-methylbenzimidazole nucleoside (2) as a mimic of 8-oxo-dA. The nucleosides were prepared by reaction of the parent heterocycles with Hoffer's chlorodeoxyribose derivative. Structural studies of the free nucleosides 1 and 2 revealed that both bases are oriented syn, thus mimicking the conformation of the oxopurine nucleosides. Suitably protected phosphoramidite derivatives were prepared for incorporation into synthetic DNAs, to be used as probes of DNA damage responses, and 5'-triphosphate derivatives (3 and 4) were synthesized as analogues of damaged nucleotides in the cellular nucleotide pool. Base pairing studies in 12-mer duplexes showed that 1 and 2 have low affinity for polar pairing partners, consistent with previous nonpolar DNA base analogues. However, both compounds pair with small but significant selectivity for purine partners, consistent with the idea that the syn purine geometry leads to pyrimidine-like shapes. Steady-state kinetics studies of 1 and 2 were carried out with the Klenow fragment of Escherichia coli DNA Pol I (exo-) in single-nucleotide insertions. In the DNA template, the analogues successfully mimicked the mutagenic behavior of oxopurines, with 1 being paired selectively with adenine and 2 pairing selectively with guanine. The compounds showed similar mutagenic behavior as nucleoside triphosphate analogues, being preferentially inserted opposite mutagenic purine partners. The results suggest that much of the mutagenicity of oxopurines arises from their shapes in the syn conformation rather than from electrostatic and hydrogen-bonding effects. The new analogues are expected to be generally useful as mechanistic probes of cellular responses to DNA damage.  相似文献   

11.
[reaction: see text] A general synthetic approach to monoprotected carbocyclic nucleoside analogues, having the nucleobase attached to a 3-hydroxymethyl-4-trialkylsilyloxymethyl-cyclopent-2-en-1-yl scaffold, was developed. A (racemic) key intermediate was prepared by a cobalt-mediated Pauson-Khand reaction. In the course of the further synthesis, the introduction of the nucleobase was achieved with complete regio- and diastereoselectivity through a palladium-catalyzed allylic substitution.  相似文献   

12.
The aim of this study was the development of a capillary electrophoretic method for the analysis of a series of novel synthetic dideoxynucleoside analogues with potential anti-HIV activity. These analogues consist of a tetrahydrofuranyl or a tetrahydropyranyl ring as the pseudosugar part and bear a hydroxyethyl side-chain and a nucleobase of the pyrimidine (eg thymine or uracil) or the purine (adenine) type with cis or trans configuration. Analysis of these derivatives was performed by capillary zone electrophoresis using 25 mM phosphate pH 3.00 and 4.00 as operating buffers for pyrimidine and purine analogues, respectively, and detection of separated species at 254 nm.  相似文献   

13.
The positional change of nitrogen‐7 of the RNA constituent guanosine to the bridgehead position‐5 leads to the base‐modified nucleoside 5‐aza‐7‐deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton‐acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all‐purine' DNA and DNA with silver‐mediated base pairs. The present work reports the single‐crystal X‐ray structure of 7‐iodo‐5‐aza‐7‐deazaguanosine, C10H12IN5O5 ( 1 ). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4′‐endo) for the ribose moiety, with an antiperiplanar orientation of the 5′‐hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7‐iodo substituent forms a contact to oxygen‐2′ of the ribose moiety. Self‐pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H…O and N—H…O). The concept of pK‐value differences to evaluate base‐pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all‐purine' RNA. Furthermore, the 7‐iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.  相似文献   

14.
[structure: see text]. A stereselective synthesis of 3-oxabicyclo[3.2.0]heptane nucleoside analogues, which were designed as conformational mimics of the anti-HIV agents 2',3'-didehydro-2',3'-dideoxythimidine (stavudine, d4T) and 2',3'-didehydro-2',3'-dideoxyadenosine (d4A), is described. The target compounds were prepared by condensation of a common intermediate bicyclic acetate, derived from a homochiral 2(5H)-furanone, with pyrimidine and purine bases under modified Vorbrüggen conditions. The conformational behavior of the synthesized nucleoside analogues was studied by NMR spectroscopy and X-ray crystallography.  相似文献   

15.
Challa H  Styers ML  Woski SA 《Organic letters》1999,1(10):1639-1641
[formula: see text] The syntheses of PNA oligomers containing potential ambiguous nucleobase analogues, namely 3-nitropyrrole and 5-nitroindole, have been accomplished. Hybridization properties of these PNAs with complementary oligodeoxynucleotides were evaluated by thermal denaturation experiments. Both novel residues exhibited little variation in Tm (< or = 1.5 degrees C) when positioned against any of the four nucleoside bases. The capability to incorporate degenerate sites should further expand the utility of PNA in applications where precise sequence information is not available.  相似文献   

16.
Ab initio calculations of halogen bond energies of artificial base pairs constructed between iodinated aromatic nucleobase mimics and nitrogen-containing acceptor molecules such as pyridine and imidazole suggest that modified base pairs are converted to optimized planar base pairs with weak Delta E values of -0.19 to -3.93 kcal/mol. To evaluate the contribution of halogen bonding toward duplex stabilization of such modified nucleobase mimics introduced into artificial base pairs, we synthesized three C-nucleoside analogues 1-3 with several iodinated aromatic rings and an imidazole nucleoside derivative 4 and incorporated them into oligodeoxynucleotides. Hybridization studies of modified oligodeoxynucleotides incorporating iodoaromatic bases showed their unique universal base-like ability; however, no indication of halogen bond formation was observed. A more sophisticated design is required for the development of new base pairs stabilized by halogen bonding.  相似文献   

17.
X-ray crystal structures of several 6-(azolyl)purine base and nucleoside derivatives show essentially coplanar conformations of the purine and appended 6-(azolyl) rings. However, the planes of the purine and imidazole rings are twisted approximately 57 degrees in a 2-chloro-6-(4,5-diphenylimidazol-1-yl)purine nucleoside, and a twist angle of approximately 61 degrees was measured between the planes of the purine and pyrrole rings in the structure of a 6-(2,5-dimethylpyrrol-1-yl)purine nucleoside derivative. Shielding "above" N7 of the purine ring by a proximal C-H on the 6-azolyl moiety is apparent with the coplanar compounds, but this effect is diminished in those without coplanarity. Syntheses of 6-(azolyl)purines from both base and nucleoside starting materials are described. Treatment of 2,6-dichloropurine with imidazole gave 2-chloro-6-(imidazol-1-yl)purine. Modified Appel reactions at C6 of trityl-protected hypoxanthine and guanine derivatives followed by detritylation gave 6-(imidazol-1-yl)- and 2-amino-6-(imidazol-1-yl)purines. Imidazole was introduced at C6 of 2',3',5'-tri-O-acetylinosine by a modified Appel reaction, and solvolysis of the glycosyl linkage gave 6-(imidazol-1-yl)purine. Guanosine triacetate was transformed into the protected 2,6-dichloropurine nucleoside, which was subjected to S(N)Ar displacement with imidazoles at C6 followed by glycosyl solvolysis to provide 2-chloro-6-(substituted-imidazol-1-yl)purines. Potential applications of these purine derivatives are outlined.  相似文献   

18.
[reaction: see text] As a contribution to bioorganometallic chemistry, an enantioselective synthesis of novel carbocyclic nucleoside analogues with a ferroceno-cyclopentene backbone was developed. Diastereoselective cuprate 1,4-addition or Mukaiyama-Michael addition to a planar-chiral enoate (ethyl (E)-2-[2-methoxycarbonyl-ferrocenyl]-acrylate) allowed for the introduction of different side chains (RCH(2)). Other important steps include a Dieckmann cyclization and the attachment of the nucleobase (NB) in an iron-assisted S(N)1 reaction. Some of the target compounds were shown to exhibit significant apoptosis-inducing activity (LD(50) = 10-20 microM) against tumor cells.  相似文献   

19.
《Tetrahedron》2019,75(37):130497
Structurally modified nucleoside analogues are a major source of therapeutic agents and building blocks for incorporation into synthetic oligonucleotides able to interfere with information transfer or other biological functions. This work describes the synthesis of non-natural l-nucleoside phosphonate mimics containing two anomeric centers. Such compounds feature either a di- or monohydroxy tetradialdose sugar as the glycone unit, while adenine is present as nucleobase. By judicious use of protecting groups at the 2- and 3-position of commercial 1-O-acetyl-2,3,5-tri-O-benzoyl-β-d-ribofuranose, both the phosphonate and nucleobase moieties were stereoselectively introduced to provide a dihydroxylated compound with cis-configured substituents as the sole reaction product. Subsequent selective deprotection and deoxygenation at the 3′-position occurred smoothly to afford the corresponding 4′-monohydroxy tetradialdose containing analogue.  相似文献   

20.
Amidines share the same NC─N building framework with many essential biochemical substances. In this work, we present a comparative mechanistic study on the deamination reactions of 19 amidine and nucleobase derivatives by the use of density functional theory. All the computations are performed at the B3LYP/6-31G(d,p) level in the gas phase and with the polarizable continuum model (PCM). Mechanisms of 2- and 3-step pathways including six- or eight-membered ring transition states were explored. Our results show that the overall activation energies for the deamination of amidine derivatives are close to those of nucleobase derivatives of the saturated C5─C6 bond, and lower than those of nucleobase derivatives of the unsaturated C5─C6 bond, while purine derivatives have the highest activation energies among all the derivatives studied. The 3-step mechanism gives results that are more consistent with the available experimental data than the 2-step mechanism. Based on the results of our current and previous work, we believe that the 3-step mechanism is the most likely mechanism for the hydrolytic deamination reactions of amidine and nucleobase derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号