首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-body decomposition processes of methylacetylene (CH(3)CCH) and its isotopomer methyl-d(3)-acetylene (CD(3)CCH) in intense laser fields (790 nm, 40 fs, 5.0 × 10(13) W cm(-2)) are investigated by the coincidence momentum imaging (CMI). In methyl-d(3)-acetylene, a total of six decomposition pathways in which one of the C-C bonds is broken and a total of six pathways in which an atomic hydrogen ion (H(+) or D(+)) or a molecular hydrogen ion (H(2)(+), HD(+), D(3)(+), or HD(2)(+)) is ejected are identified. It is revealed from the analysis of the CMI data that the migration of two deuterons as well as the exchange between a proton and a deuteron occurs prior to the two-body decomposition of a doubly charged parent molecule.  相似文献   

2.
The ethynyl metal hydride molecules (HM-C≡CH) are identified in the matrix infrared spectra from reactions of laser-ablated Mn and Re atoms with acetylene using D and (13)C isotopic substitution and density functional computed frequencies. The assignment of strong M-H as well as C≡C bond stretching product absorptions suggests oxidative C-H insertion during reagent codeposition and subsequent photolysis. The unique linear structure calculated for HMn-C≡CH is parallel to C(3v) structures found recently for Mn complexes including CH(3)-MnF.  相似文献   

3.
Several 2H-chromenes derived from carbazoles were analyzed by electrospray tandem mass spectrometry. The 2H-chromenes constitute an important class of compounds that exhibit photochromic activity. The fragmentation pathways of the protonated molecular species [M+H]+ were studied, and main fragmentation pathways of these compounds were identified. Fragmentation pathways of [M+D]+ ions were also studied in order to obtain information about the location of the ionizing proton or deuteron. It was found that the proton is not preferentially located on the nitrogen atom. The charge is preferentially located as a tertiary carbocation, resulting from the uptake of the proton (or deuteron) by the zwitterionic open structure of the chromenes. The major fragmentation occurred by cleavage of the gamma-bond relative to the carbocation center, leading to a fragment at m/z 191 (C5H11+ or C14H9N+), which are the most abundant fragment ions for almost all compounds. The presence of substituents in the chromene ring does not change this behavior. Other observed common fragmentation pathways included loss of CH3* (15 Da), loss of CO (28 Da), combined loss of CO and CH3 (43 Da), and loss of the phenyl ring via combined loss of C6H4 and CH3* (-91 Da) and combined loss of C6H6 and CO (-106 Da).  相似文献   

4.
To analyze the proton/deuteron (H/D) isotope effect on the stable adsorption sites on zeolite-templated carbon (ZTC), we have performed path integral molecular dynamics simulations including thermal and nuclear quantum effects with the semi-empirical PM3 potential at 300?K. Here, for the adsorption sites of additional proton (H*) and deuteron (D*), we chose different five carbon atoms labeled as ??-, ??1-, ??2-, ??-, and ??-carbons from edge to bottom for inside of buckybowl (C36H12 and C36D12). The stable adsorption sites of D* are observed on all carbon atoms, while those of H* are not observed on ??-carbon atom, but only on ??-, ??1-, ??2-, and ??-carbon atoms. This result is explained by the fact that H* can easily go over the barrier height for hydrogen transferring from ??- to ??2-carbons at 300?K, since the zero-point energy of H* is greater than that of D*.  相似文献   

5.
The crossed molecular beam reactions of ground state methylidyne, CH(X(2)Π), with D2-acetylene, C(2)D(2)(X(1)Σ(g)(+)), and of D1-methylidyne, CD(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), were conducted under single collision conditions at a collision energy of 17 kJ mol(-1). Four competing reaction channels were identified in each system following atomic 'hydrogen' (H/D) and molecular 'hydrogen' (H(2)/D(2)/HD) losses. The reaction dynamics were found to be indirect via complex formation and were initiated by two barrierless-addition pathways of methylidyne/D1-methylidyne to one and to both carbon atoms of the D2-acetylene/acetylene reactant yielding HCCDCD/DCCHCH and c-C(3)D(2)H/c-C(3)H(2)D collision complexes, respectively. The latter decomposed via atomic hydrogen/deuterium ejection to form the thermodynamically most stable cyclopropenylidene species (c-C(3)H(2), c-C(3)D(2), c-C(3)DH). On the other hand, the HCCDCD/DCCHCH adducts underwent hydrogen/deuterium shifts to form the propargyl radicals (HDCCCD, D(2)CCCH; HDCCCH, H(2)CCCD) followed by molecular 'hydrogen' losses within the rotational plane of the decomposing complex yielding l-C(3)H/l-C(3)D. Quantitatively, our crossed beam studies suggest a dominating atomic compared to molecular 'hydrogen' loss with fractions of 81 ± 23% vs. 19 ± 10% for the CD/C(2)H(2) and 87 ± 30% vs. 13 ± 4% for the CH/C(2)D(2) systems. The role of these reactions in the formation of interstellar isomers of C(3)H(2) and C(3)H is also discussed.  相似文献   

6.
The aryl-PC type ligand 3, benzyl(di-tert-butyl)phosphane, reacts with [Rh(coe)(2)(solv)(n)()]BF(4) (coe = cyclooctene, solv = solvent), producing the C-H activated complexes 4a-c (solv = (a). acetone, (b). THF, (c). methanol). Complexes 4a-c undergo reversible arene C-H activation (observed by NMR spin saturation transfer experiments, SST) and H/D exchange into the hydride and aryl ortho-H with ROD (R = D, Me). They also promote catalytic H/D exchange into the vinylic C-H bond of olefins, with deuterated methanol or water utilized as D-donors. Unexpectedly, complex 2, based on the benzyl-PC type ligand 1 (analogous to 3), di-tert-butyl(2,4,6-trimethylbenzyl)phosphane, shows a very different reversible C-H activation pattern as observed by SST. It is not active in H/D exchange with ROD and in catalytic H/D exchange with olefins. To clarify our observations regarding C-H activation/reductive elimination in both PC-Rh systems, density functional theory (DFT) calculations were performed. Both nucleophilic (oxidative addition) and electrophilic (H/D exchange) C-H activation proceed through eta(2)-C,H agostic intermediates. In the aryl-PC system the agostic interaction causes C-H bond acidity sufficient for the H/D exchange with water or methanol, which is not the case in the benzyl PC-Rh system. In the latter system the C-H coordination pattern of the methyl controls the reversible C-H oxidative addition leading to energetically different C-H activation processes, in accordance with the experimental observations.  相似文献   

7.
Oxidation of 1,1'-bis(diphenylphosphino)-ferrocene (DPPF) was found to occur when it served as the ligand for Pd(II)(CH3COO)2 in a Heck reaction. This oxidative impurity of DPPF, referred to as DPPF(O), was identified by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) and exact mass measurements. Protonated DPPF(O) exhibited unique fragmentation pathways in the gas phase. Hydrogen/deuterium (H/D) exchange experiments provided important insights into the dissociation mechanisms of protonated DPPF(O), suggesting the existence of isomeric structures of the product ions by retaining or losing a proton (or deuteron) upon collision-induced dissociation (CID). The specific fate of the proton (or deuteron) upon CID is postulated to be dependent on the distance between the exchangeable proton (or deuteron) and the sites of bond cleavage. Density functional theory (DFT) calculations at the B3LYP/LANL2DZ level of theory showed that oxygen in DPPF(O) plays a pivotal role in invoking pi-cation interactions between the p-type lone pair electrons (n pi) in oxygen and the anti-bonding orbital of Fe(II), accounting for the major fragmentation pathways of protonated DPPF(O). Facile formation of organometallic distonic ions in dissociation of protonated DPPF(O), and especially of protonated DPPF, could be useful for further exploration of their chemical properties by gas-phase ion/molecule reactions.  相似文献   

8.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

9.
The reaction of (eta(5)-C5H5)Fe(CO)2B(C6F5)2 with CO has been shown to proceed via ligand substitution at the metal with accompanying transfer of the boryl fragment (via C-H insertion) to the Cp ring, thereby generating the zwitterion [eta(5)-C5H4B(C6F5)2H]Fe(CO)3 in quantitative yield.  相似文献   

10.
Gold nanoparticles (Au NPs) have been synthesized using simple thermolysis, whether from the mesophase or from toluene solutions, of mesogenic alkynyl-isocyanide gold complexes [Au(C≡C-C(6)H(4)-C(m)H(2m+1))(C≡N-C(6)H(4)-O-C(n)H(2n+1))]. The thermal decomposition from the mesophase is much slower than from solution and produces a more heterogeneous size distribution of the nanoparticles. Working in toluene solution, the size of nanoparticles can be modulated from ~2 to ~20 nm by tuning the chain lengths of the ligands present in the precursor. Different experimental conditions have been analyzed to reveal the processes governing the formation of the gold nanoparticles. Experiments on the effect of adding ligands or bubbling oxygen support that the thermal decomposition is a bimolecular process that starts by decoordination of the isocyanide ligand, producing an oxidative coupling of the akynyl group to [R-C≡C-C≡C-R] and reduction of gold(I) to gold(0) as nanoparticles. The nanoparticles obtained behave as a catalyst in the oxidation of isocyanide (CNR) to isocyanate (OCNR), which in turn cooperates to catalyze the decomposition.  相似文献   

11.
The designed synthesis and structural characterization of two metal cluster-centered metallosupramolecular architectures are reported. In complex [(CF(3)SO(3))Ag(4)((t)BuC≡C)(Py8)](CF(3)SO(3))(2) (1) and [(CF(3)SO(3))Ag(4){C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C}Ag(4)(CF(3)SO(3))(Py8)(2)](CF(3)SO(3))(4) (2), organic acetylide ligands are utilized to induce the formation of polynuclear silver aggregates, which are encapsulated into the central cavity of the neutral macrocyclic compound azacalix[8]pyridine (Py8). The tetrasilver cluster centered [2]- and [3]-pseudo-rotaxane structures are obtained and fully characterized by X-ray crystallography, ESI mass spectrometry, and (1)H NMR spectroscopy.  相似文献   

12.
Formation of di- and tri-atomic hydrogen molecular ions during the fragmentation of methanol dication is investigated by coincidence momentum imaging. Site-specific probability for such associative break-ups is determined. Two-body and three-body break-up channels involving association and migration of H atoms are identified. Three-body associative break-ups are found to occur sequentially, triggered by the loss of one H atom, followed by separation of charges. Based on the fragment momentum distributions we propose that H atom migration is induced in the first stage of a three-body sequential break-up, and suggest a structure for the intermediate dication.  相似文献   

13.
We have used a heated 2 cm × 1 mm SiC microtubular (μtubular) reactor to decompose acetaldehyde: CH(3)CHO + Δ → products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 μs in the μtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH(3)CHO, we have studied three isotopologues, CH(3)CDO, CD(3)CHO, and CD(3)CDO. We have identified the thermal decomposition products CH(3) (PIMS), CO (IR, PIMS), H (PIMS), H(2) (PIMS), CH(2)CO (IR, PIMS), CH(2)=CHOH (IR, PIMS), H(2)O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH(3)CHO; namely, radical decomposition: CH(3)CHO + Δ → CH(3) + [HCO] → CH(3) + H + CO; elimination: CH(3)CHO + Δ → H(2) + CH(2)=C=O; isomerization∕elimination: CH(3)CHO + Δ → [CH(2)=CH-OH] → HC≡CH + H(2)O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH(2)=C:, as an intermediate in the decomposition of vinyl alcohol: CH(2)=CH-OH + Δ → [CH(2)=C:] + H(2)O → HC≡CH + H(2)O.  相似文献   

14.
The new [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2) -dppe)(2) C≡C(C(6)H(5))] complex (3-H) and its hexanuclear relative [{(η(2)-dppe)(η(5)-C(5) Me(5))Fe(C≡C-1,4-C(6)H(4)-C≡C)Ru(η(2)-dppe)(2)(C≡C-1,4-C(6)H(4)C≡C)(3)(1,3,5-C(6)H(3))] (4) have been synthesized and characterized. The linear and cubic nonlinear optical properties of these compounds in their various redox states have been studied along with those of the analogous complexes [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2)-dppe)(2)R][PF(6)](n) (n=0-2; R=Cl, 2-Cl; R=C≡C(4-C(6)H(4)NO(2)),3-NO(2)). We show that molecules exhibiting large third-order nonlinearities can be obtained by assembling such dinuclear Fe/Ru units around a central 1,3,5-substituted C(6)H(3) core. These data are discussed with a particular emphasis on the large changes in their nonlinear (third-order) optical properties brought about by oxidation. Experimental and computational (DFT) evidence for the electronic structures of these compounds in their various redox states is presented using 3-H(n+) as a prototypical model. Single crystals of this complex in its mono-oxidized state (3-H[PF(6)]) provide the first structural data for such carbon-rich Fe(III) /Ru(II) heteronuclear mixed-valent (MV) systems. Although experimental evidence for the structure of the dioxidized states was more difficult to obtain, the theoretical study reveals that 3-H(2+) can be considered to have a biradical structure with two independent spins. The low-lying absorptions that appear in the near-infrared (NIR) range for all these compounds following oxidation correspond to intervalence charge-transfer (IVCT) bands for the mono-oxidized states and to ligand-to-metal charge-transfer (LMCT) transitions for the dioxidized states. These play a crucial role in the strong optical modulation achieved. The possibility of accessing additional states with distinct linear or nonlinear optical properties is also briefly discussed.  相似文献   

15.
<正>Self-organization of copper (I) ion with bridging ligand bis(diphenylphosphino)-acetylene resulted in the isolation of a dinuclear copper ( I ) complex [Cu2(μ-Ph2PC≡ CPPh2)3(MeCN)2](ClO4)2·Et2O. Structural analysis indicated the existence of a helical coordination cage, in which two copper (I) atoms are bridged triply by the linear diphosphine Ph2PC≡CPPh2 with the CuACu separation of 6.231 A. The copper (I) atom is in an approximately tetrahedral environment with a NP3 coordination chromophore. The complex crystallizes in the triclinic, space group P 1 with a = 13.8456(2), b = 16.6010(1), c = 18.9215(3) A, α = 98.289(1), β = 91.232(1), γ = 106.496(1)°, V = 4117.60(9) A3, Z = 2, C86H82Cl2N2O9P6Cu2, Mr= 1659.37, Dc= 1.338 g/cm3, F(000) = 1708, μ = 0.754 mm-1, the final R = 0.0688 and wR = 0.1940 for 11692 reflections with I>2σ(I).  相似文献   

16.
Reactions of ethylene with laser-ablated group 5 metal atoms in excess argon have been carried out during codeposition at 8 K, and the matrix infrared spectra of intermediate products have been investigated. Oxidative C-H insertion of the transition metal into a C-H bond occurs and beta-hydrogen transfer follows to form the dihydrido complexes (MH2-C2H2). In the Ta spectra, the dihydrido complex is the primary product, whereas the Nb and V spectra reveal absorptions from both the insertion (MH-C2H3) and dihydrido complexes. The insertion and dihydrido complexes identified here are in fact the reaction intermediates in the hydrogen elimination of ethylene proposed in previous reaction dynamics studies. Calculations also show that the higher oxidation-state complex becomes more stable relative to the insertion product going down the group 5 family.  相似文献   

17.
Triangular graphene nanoflakes (TGFs), due to their novel magnetic configurations, can serve as building blocks to design new magnetic materials. Based on spin polarized density functional theory, we show that the two dimensional (2D) structures composed of zigzag-edged TGFs linked by 1,3,5-benzenetriyl units (TGF(N)-C(6)H(3)) are ferromagnetic. Their magnetic moments can be tuned by changing the size and edge termination of TGFs, namely magnetic moments increase linearly with the size of TGFs, and double hydrogenation of the edge carbon atoms can significantly enhance stability of the ferromagnetic states. The dynamic stability of the assembled 2D structures is further confirmed by frequency calculations. The characteristic breathing mode is identified where the frequency changes with the inverse square root of the TGFs width, which can be used to identify the size of TGF(N)-C(6)H(3) in Raman experiments. This study provides new pathways to assemble 2D ferromagnetic carbon materials.  相似文献   

18.
The adsorption and decomposition of benzoic acid on the Cu(110) surface has been investigated using temperature-programmed reaction (TPR) spectroscopy and scanning tunneling microscopy (STM). The benzoate species is found to exist in two conformations--a phase containing upright species at monolayer saturation and a phase containing many lying-down species at lower coverages. Thermal decomposition begins to occur near 500 K, yielding benzene and CO(2). It is found that phenyl species, generated preferentially from the lying-down benzoate species, efficiently abstract H atoms from undecomposed benzoate species to produce benzene in a rate-controlling process with an activation energy of about 29 kcal/mol. Using deuterium-atom substitution at the 4-C position on the benzoate ring it is found that the hydrogen-abstraction reaction is selective for 2,3 and 5,6 C-H bonds. This observation indicates that the mobile phenyl species is surface bound and preferentially attacks C-H bonds which are nearest the Cu surface and bind the benzoate species as either an upright species or a tilted species.  相似文献   

19.
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.  相似文献   

20.
Triruthenium [(dppe)(2)Ru{-C≡C-1,4-C(6)H(2)-2,5-R(2)-CH═CH-RuCl(CO)(P(i)Pr(3))(2)}(2)](n+) (4a, R = H; 4b, R = OMe) containing unsymmetrical (ethynyl)(vinyl)phenylene bridging ligands and displaying five well-separated redox states (n = 0-4) are compared to their bis(alkynyl)ruthenium precursors (dppe)(2)Ru{-C≡C-1,4-C(6)H(2)-2,5-R(2)-C≡CR'} (2a,b: R' = TMS; 3a,b: R' = H) and their symmetrically substituted bimetallic congeners, complexes {Cl(dppe)(2)Ru}(2){μ-C≡C-1,4-C(6)H(2)-2,5-R(2)-C≡C} (A(a), R = H; A(b), R = OMe) and {RuCl(CO)(P(i)Pr(3))(2)}(2){μ-CH═CH-1,4-C(6)H(2)-2,5-R(2)-CH═CH} (V(a), R = H; V(b), R = OMe) as well as the mixed (ethynyl)(vinyl)phenylene bridged [Cl(dppe)(2)Ru-C≡C-1,4-C(6)H(4)-CH═CH-RuCl(CO)(P(i)Pr(3))(2)] (M(a)). Successive one-electron transfer steps were studied by means of cyclic voltammetry, EPR and UV-vis-NIR-IR spectroelectrochemistry. These studies show that the first oxidation mainly involves the central bis(alkynyl) ruthenium moiety with only limited effects on the appended vinyl ruthenium moieties. The second to fourth oxidations (n = 2, 3, 4) involve the entire carbon-rich conjugated path of the molecule with an increased charge uniformly distributed between the two arms of the molecules, including the terminal vinyl ruthenium sites. In order to assess the charge distribution, we judiciously use (13)CO labeled analogues to distinguish stretching vibrations due to the acetylide triple bonds and the intense and charge-sensitive Ru(CO) IR probe in different oxidation states. The comparison between complex pairs 4a,b(n+) (n = 0-3), A(a,b)(n+) and V(a,b)(n+) (n = 0-2) serves to elucidate the effect of the methoxy donor substituents on the redox and spectroscopic properties of these systems in their various oxidation states and on the metal/ligand contributions to their frontier orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号