首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Korsse J  Leurs GA  Louwrier PW 《Talanta》1985,32(6):451-455
The acid dissociation constants of the metal chelates H(3)CuDTPA, H(2) NiDCTA, HCrEDTA, HCoHEEDTA, HNiHEEDTA and HCuHEEDTA were determined by potentiometric titration. The constants determined at an ionic strength of 0.1 were pK(a,1) = 2.1; pK(a,2) = 2.8 and pK(a,3) = 4.75 for H(3) CuDTPA (296 K), pK(a,1) = 2.16 for HCrEDTA (298 K); pK(a,1) = 1.6 and pK(a,2) = 2.0 for H(2) NiDCTA (298 K); pK(a,1) = 2.24 for HCoHEEDTA, pK(a,1) = 2.47 for HCuHEEDTA and pK(a,1) = 1.73 for HNi-HEEDTA. At high pH the formation of ternary hydroxo-complexes was observed for the chelates CrEDTA(-) (pK(a,1) = 7.35; pK(a,1) = 12.35), CoHEEDTA(-) (pK(a,1) = 11.74), NiHEEDTA(-) (pK(a,2) = 12,44) and CuHEEDTA(-) (pK(a,2) = 10.45).  相似文献   

2.
The hydrogen bonding and deprotonation processes between four ruthenium biimidazole complexes, namely [Ru(bpy)(2)(BiimH(2))](PF(6))(2) (1, bpy is bipyridine, BiimH(2) is 2,2'-biimidazole), [Ru(bpy)(2)-(BbimH(2))](PF(6))(2) (2, BbimH(2) is 2,2'-bibenzimidazole), and [Ru(bpy)(2)(DMBbimH(2))](PF(6))(2) (3, DMBbimH(2) is 7,7'-dimethyl-2,2'-bibenzimidazole) and [Ru(bpy)(2)(TMBbimH(2))](2+) (4, TMBbimH(2) is 5,6,5',6'-tetramethyl-2,2'-bibenzimidazole), and acetate are investigated. Their hydrogen bonded adducts are indeed trapped and observed by absorption spectra and electrochemical experiments in acetonitrile solution in the presence of an excess of acetic acid for the first time. The binding constants log K(B) for these adducts are 6.74 for 1·OAc, 7.11 for 2·OAc, 7.26 for 3·OAc, and 6.99 for 4·OAc. A new approach to calculate the deprotonation constant is also developed by establishing a set of circular equilibria. The equilibrium constants for the first deprotonation step of the complexes log K(A) are 2.74 for 1, 5.19 for 2, 4.54 for 3, and 3.78 for 4. The pK(a1) values of the complexes in acetonitrile solution are calculated by subtracting log K(A) from pK(a) (HOAc in acetonitrile), giving 19.6 for 1, 17.1 for 2, 17.8 for 3, and 18.5 for 4. The degree of proton transfer (D(PT)) can be quantified by the calculation of absorption spectral and redox data, which is 0.41 for 1·OAc, 0.53 for 2·OAc, 0.57 for 3·OAc, and 0.47 for 4·OAc. Interestingly, the binding constant log K(B) (7.26) and D(PT) value (0.57) both reach their maxima at a critical point, where pK(a1) for the complex is 17.8 and ΔpK(a) for the adduct is 4.5 (ΔpK(a) = pK(a)(HOAc) - pK(a1), in acetonitrile solution). Moreover, the binding constant log K(B) shows linear correlation with the degree of proton transfer D(PT).  相似文献   

3.
A systematic and unbiased structure search based on a genetic algorithm in combination with density functional theory (DFT) procedures has been carried out to locate low-energy isomers of Ga(n) up to n = 25. For the smaller clusters up to n = 8 results are checked by coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) employing a quadruple zeta type basis set. The CCSD(T) calculations confirm a (3)Π(u) ground state for the dimer. Ga(3) has a doublet ground state 0.2 eV below two quartet states, whereas two isoenergetic triplet states are predicted for Ga(4) with D(4h) and a rhombus structure (D(2h)). Three low-lying isomers with doublet electronic states are found for Ga(5): a W-structure (C(2v)), a planar envelope (C(s)) at 0.015 eV, and a non-planar envelope (C(1)) 0.086 eV above the ground state. A triplet state for a trigonal prism (D(3h)) and a singlet for an open prism (C(2v)) are computed with virtually identical energy for Ga(6). The global minimum for Ga(7) is a capped trigonal prism (C(s)) and that for Ga(8) a distorted cube in D(2h). DFT provides a fair agreement with CCSD(T), deviations in dissociation energies are up to 0.2 eV for n ≤ 8. The structures for Ga(n) are mostly irregular for n ≥ 9, those for Ga(12) to Ga(17) can be derived from the truncated decahedron with D(5h) symmetry though highly distorted by Jahn-Teller effects, for example. For Ga(18) to Ga(23) we find stacks of five- and six-membered rings as global minima, e.g., 5-1-5-1-6 for Ga(18). Ga(24) and Ga(25) consist of layers with packing sequence ABCBA similar to those found for clusters of aluminum. The most important feature of computed cohesive energies is a rapid increase with n: for Ga(25) it reaches 2.46 eV, the experimental bulk value is 2.84 eV. Particularly stable clusters for Ga(n) are seen for n = 7, 14, and 20.  相似文献   

4.
Second-order rate constants have been measured spectrophotometrically for the reactions of O-2,4-dinitrophenyl thionobenzoate (1) and 2,4-dinitrophenyl benzoate (2) with a series of substituted pyridines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The Br?nsted-type plots obtained are nonlinear with beta(1) = 0.26, beta(2) = 1.07, and pK(a) degrees = 7.5 for the reactions of 1 and beta(1) = 0.40, beta(2) = 0.90, and pK(a) degrees = 9.5 for the reactions of 2, suggesting that the pyridinolyses of 1 and 2 proceed through a zwiterionic tetrahedral intermediate T(+/-) with a change in the rate-determining step at pK(a) degrees = 7.5 and 9.5, respectively. The thiono ester 1 is more reactive than its oxygen analogue 2 except for the reaction with the strongest basic pyridine studied (pK(a) = 11.30). The k(1) value is larger for the reactions of 1 than for those of 2 in the low pK(a) region, but the difference in the k(1) value becomes negligible with increasing the basicity of pyridines. On the other hand, 1 exhibits slightly larger k(2)/k(-1) ratio than 2 in the low pK(a) region but the difference in the k(2)/k(-1) ratio becomes more significant with increasing the basicity of pyridines. Pyridines are more reactive than alicyclic secondary amines of similar basicity toward 2 in the pK(a) above ca. 7.2 but less reactive in the pK(a) below ca. 7.2. The k(1) value is slightly larger, but the k(2)/k(-1) ratio is much smaller for the reactions of 2 with pyridines than with isobasic secondary amines in the low pK(a) region, which is responsible for the fact that the weakly basic pyridines are less reactive than isobasic secondary amines.  相似文献   

5.
We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order M?ller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.  相似文献   

6.
In anhydrous pyridine solution at 294 K, U(III) and Ce(III) triiodides were found to form both 1:1 (ML) and 1:2 (ML(2)) complexes with bipyridine (bipy = L) while Nd(III) triodide formed only a 1:2 complex. The 1:3 (ML(3)) complexes were identified at low temperature with a large excess of L. Conductometry measurements showed for U(III) a large increase in the conductivity when increasing the molar ratio L:U. The complex UL(2) was found to be a 1:1 electrolyte and the species UI(2)(+) was more reactive toward L in comparison with UI(3). For Ce(III) and Nd(III), MI(2)(+) and MI(3) present about the same affinity for L. The stability of the complexes is limited, and U(III) possesses a slightly higher affinity for bipy than the trivalent lanthanides. Interestingly, a preference for the formation of ML(2) complex was shown for all the studied M(III) ions. The driving force for complex formation was always the enthalpy, and, surprisingly for a bidendate ligand (bipy), no favorable entropy contribution to complex formation was observed. The X-ray crystal structures of [CeI(3)(bipy)(2)(py)](4).5py.bipy and UI(3)(bipy)(2)(py).2py were determined. The structures of the molecules MI(3)(bipy)(2)(py) are almost identical for U and Ce. The mean M(III)-N(bipy) bond distances are equal to 2.67(3) A for Ce(III) and 2.65(4) A for U(III). The slightly smaller M(III)-N(bipy) distances observed for U(III) would reflect a slightly more important covalent character of the U(III)-N(bipy) bonds, in agreement with the slightly better affinity of U(III) than Ce(III) or Nd(III) toward bipy observed in solution and with the fact that the enthalpy is the driving force for complex formation.  相似文献   

7.
Mechanisms for water exchange from the bioxo-capped M-M-bonded trinuclear clusters, [M3(mu3-O)2(mu-O2CCH3)6(OH2)3]2+ [M = Mo(IV) and W(IV)], were investigated using high-pressure 17O NMR and compared to our previous work on a similar Rh(III) trimer. Reaction rates decrease by more than a factor of 2 when pressure is increased from 6 to 250 MPa for the Mo(IV) trimer, while exchange rates increase by less than a factor of 1.2 (10-229 MPa) for the W(IV) trimer. From the pressure dependence of the reaction rate, activation volumes (DeltaV()) were calculated to be DeltaV() = +8.0 (+/-0.4) cm(3) mol(-1) and DeltaV = -1.9 (+/-0.2) cm(3) mol(-1) for the Mo(IV) cluster and W(IV) cluster, respectively, which is the largest difference ( approximately 10 cm(3) mol(-1)) in activation volumes for any pair of 4d-5d (and 3d-4d) transition metal species located within the same group of the periodic table. If we interpret these activation volumes in terms of Swaddle's semiempirical model, which he established for simple octahedral monomers (Associative (A) = DeltaV approximately -13; Interchange (I) = DeltaV approximately 0; or Dissociative (D) = DeltaV approximately +13), our results suggest that water exchange follows a dissociative-interchange (Id) mechanism for the Mo(IV) cluster and an associative-interchange (Ia) activation mode for the W(IV) trimer. These volumes exhibit a unique changeover in the water-exchange mechanism despite considerable similarities in molecular structure and reactivity. This changeover could provide a standard for computational simulations of ligand-exchange pathways in molecules that are more complicated than monomers.  相似文献   

8.
Micellar electrokinetic capillary chromatography (MEKC) was investigated for the determination of Viagra (sildenafil citrate, SC) and its metabolite (UK-103,320) in human serum in a concentration range of clinical interest. For MEKC, human serum samples spiked with SC and UK were obtained directly after elution with methanol from a tC18 cartridge. The extract was evaporated and regenerated in a solution 1 mM of phosphate buffer (pH 12.3) which contained a methanol percentage of 20% that was analyzed using phosphate buffer (pH 12.3, 10 mM) containing 30 mM sodium dodecyl sulfate (SDS) as separation electrolyte and a fused-silica capillary. This method gave satisfactory interday precision with respect to migration times relative standard deviation (RSD < 1%) and linear responses for the concentration ranges investigated (0.50-3.50 mg L(-1) for the compound SC and 0.90-4.60 mg L(-1) for UK). An intraday RSD (n = 5 graphs) between the slopes of the calibration graphs was acceptable (6.40%) for SC and (3.37%) for UK. A satisfactory interday precision between slopes was also obtained (RSD 4.10% for SC and a RSD 2.72% for UK) which demonstrated the ruggedness of this method. Detection limits (S/N = 3) were about 200 ng/mL for both compounds in human serum. MEKC was shown as a good method with regards to simplicity, precision and sensitivity.  相似文献   

9.
A kinetic study is reported for reactions of Y-substituted phenyl X-substituted cinnamates (1a-e and 3a-g) and benzoates (2a-e and 4a-g) with a series of alicyclic secondary amines in 80 mol % H2O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. Reactions of 2,4-dinitrophenyl X-substituted cinnamates (1a-e) and benzoates (2a-e) with amines result in linear Yukawa-Tsuno plots. The rho(X) values are much smaller for the reactions of 1a-e than for those of 2a-e. A distance effect and the nature of the reaction mechanism (i.e., a concerted mechanism for 1a-e) have been suggested to be responsible for the small rho(X) values. The Br?nsted-type plots for the reactions of 2,4-dinitrophenyl X-substituted cinnamates (1a, 1c, and 1e) with amines are curved with a decreasing betanuc value from 0.65 to 0.3-0.4. The reactions of Y-substituted phenyl cinnamates (3a-g) with morpholine also result in a curved Br?nsted plot, while the corresponding reactions of Y-substituted phenyl benzoates (4a-e) exhibit a linear Br?nsted plot. It has been concluded that the curved Br?nsted plots found for the reactions of the cinnamates (1a, 1c, 1e, and 3a-g) are not due to a change in the rate-determining step (RDS) but due to a normal Hammond effect for a concerted mechanism, that is, an earlier transition state (TS) for a more reactive amine or substrate.  相似文献   

10.
Lai YJ  Tseng WL 《The Analyst》2011,136(13):2712-2717
This study describes a simple, rapid method for sensing Cr(vi) using 5-thio-(2-nitrobenzoic acid) modified gold nanoparticles (TNBA-AuNPs) as a remover for Cr(iii) and as a sensor for Cr(vi). We discovered that TNBA-AuNPs were dispersed in the presence of Cr(vi), whereas Cr(iii) induced the aggregation of TNBA-AuNPs. Due to this phenomenon, TNBA-AuNPs can be used as a sorbent material for the removal of >90% Cr(iii), without removing Cr(vi). After centrifuging a solution containing Cr(iii), Cr(vi), and TNBA-AuNPs, Cr(iii) and Cr(vi) were separately present in the precipitate and supernatant. In other words, TNBA-AuNPs are capable of separating a mixture of Cr(iii) and Cr(vi). The addition of ascorbic acid to the supernatant resulted in a reduction of Cr(vi) to Cr(iii), driving the aggregation of TNBA-AuNPs. The selectivity of this approach is more than 1000-fold for Cr(vi) over other metal ions. The minimum detectable concentration of Cr(vi) was 1 μM using this approach. Inductively coupled plasma mass spectrometry provided an alternative for the quantification of Cr(iii) and Cr(vi) after a mixture of Cr(iii) and Cr(vi) had been separated by TNBA-AuNPs. The applicability of this approach was validated through the analysis of Cr(vi) in environmental water samples.  相似文献   

11.
We discuss the importance of the topography of the potential energy hypersurface for the ionic conductivity of perovskite-related A(2)B(2)O(5) oxides. A correlation between the energetic preference of the cations for different coordination geometries and the ionic conductivity is proposed based on a first principles periodic density functional theory study of selected possible structures for Ba(2)In(2)O(5), Sr(2)Fe(2)O(5), Sr(2)Mn(2)O(5), and La(2)Ni(2)O(5). There are a large number of low-energy local minima on the potential energy hypersurfaces of the two first compounds due to an energetic preference for BO(4) tetrahedra. Tetrahedral environments are energetically unfavorable for Mn(III) in Sr(2)Mn(2)O(5) and for Ni(II) in La(2)Ni(2)O(5), and the number of low-energy configurations is relatively low in these two cases. Consistent with our findings, in contrast to Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5), Sr(2)Mn(2)O(5) and La(2)Ni(2)O(5) do not exhibit transitions to disordered phases on heating, and there appear to be no reports of enhanced ionic conductivity for these compounds. Thus we suggest that the possibility of many different oxygen orderings associated with a variety of low-energy connectivity schemes within tetrahedral layers such as in the brownmillerite-based structures of Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5) is a prerequisite for high ionic conductivity in perovskite-related A(2)B(2)O(5) oxides.  相似文献   

12.
High resolution (0.004 and 0.01 cm(-1) instrumental bandwidth) interferometric Fourier transform infrared spectra of (14)NH2D and (14)ND2H were measured on a Bomem DA002 spectrometer in a supersonic jet expansion and at room temperature. We report the analysis of the bending fundamentals of (14)NH2D with term values Tv(s)=1389.9063(2) cm(-1) and Tv(a)=1390.4953(2) cm(-1) for the nu(4b) fundamental and Tv(s)=1605.6404(7) cm(-1) and Tv(a)=1591.0019(7) cm(-1) for the nu(4a) fundamental, and of (14)ND2H with term values of Tv(s)=1233.3740(2) cm(-1) and Tv(a)=1235.8904(2) cm(-1) for the nu(4a) fundamental and Tv(s)=1461.7941(9) cm(-1) and Tv(a)=1461.9918(19) cm(-1) for the nu(4b) fundamental. In all cases Tv(s) gives the position of the symmetric inversion sublevel (with positive parity) and Tv(a) the position of the antisymmetric inversion sublevel (with negative parity). The notation for the fundamentals nu(4a) and nu(4b) is chosen by correlation with the degenerate nu(4) mode in the C(3v) symmetric molecules NH3 and ND3. The degeneracy is lifted in Cs symmetry and a indicates the symmetric, b the antisymmetric normal mode with respect to the Cs symmetry plane in NH2D and ND2H. Assignments were established with certainty by means of ground state combination differences. About 20 molecular parameters of the effective S-reduced Hamiltonian could be determined accurately for each fundamental. In particular, the effect of Fermi resonances of the 2nu(2) overtone with the nu(4a) bending mode was observed, leading to an increased inversion splitting in the case of ND2H and to a strongly increased inversion splitting and an inverted order of the two inversion levels in NH2D. Rotational perturbations observed with the nu(4b) bending fundamentals are probably due to Coriolis interactions with the inversion overtone 2nu(2). The results are important for understanding isotope effects on the inversion in ammonia as well as its selective catalysis and inhibition by excitation of different vibrational modes, as treated by quantum dynamics on high dimensional potential hypersurfaces of this molecule.  相似文献   

13.
Aqueous solvolyses of acyl derivatives of hydrates (water adducts) of anthracene and benzofuran yield carbocations which undergo competitive deprotonation to form the aromatic molecules and nucleophilic reaction with water to give the aromatic hydrates. Trapping experiments with azide ions yield rate constants k(p) for the deprotonation and k(H2O) for the nucleophilic reaction based on the "azide clock". Combining these with rate constants for (a) the H(+)-catalyzed reaction of the hydrate to form the carbocation and (b) hydrogen isotope exchange of the aromatic molecule (from the literature) yields pK(R) = -6.0 and -9.4 and pK(a) = -13.5 and -16.3 for the protonated anthracene and protonated benzofuran, respectively. These pK values may be compared with pK(R) = -6.7 for naphthalene hydrate (1-hydroxy-1,2-dihydronaphthalene), extrapolated to water from measurements by Pirinccioglu and Thibblin for acetonitrile-water mixtures, and pK(a) = -20.4 for the 2-protonated naphthalene from combining k(p) with an exchange rate constant. The differences between pK(R) and pK(a) correspond to pK(H2O), the equilibrium constant for hydration of the aromatic molecule (pK(H2O) = pK(R) - pK(a)). For naphthalene and anthracene values of pK(H2O) = +13.7 and +7.5 compare with independent estimates of +14.2 and +7.4. For benzene, pK(a) = -24.3 is derived from an exchange rate constant and an assigned value for the reverse rate constant close to the limit for solvent relaxation. Combining this pK(a) with calculated values of pK(H2O) gives pK(R) = -2.4 and -2.1 for protonated benzenes forming 1,2- and 1,4-hydrates, respectively. Coincidentally, the rate constant for protonation of benzene is similar to those for protonation of ethylene and acetylene (Lucchini, V.; Modena, G. J. Am. Chem Soc. 1990, 112, 6291). Values of pK(a) for the ethyl and vinyl cations (-24.8) may thus be derived in the same way as that for the benzenonium ion. Combining these with appropriate values of pK(H2O) then yields pK(R) = -39.8 and -29.6 for the vinyl and ethyl cations, respectively.  相似文献   

14.
The reactions of a series of secondary alicyclic (SA) amines with O-phenyl and O-ethyl O-(2,4-dinitrophenyl) thiocarbonates (1 and 2, respectively) and of a series of pyridines with the former substrate are subjected to a kinetic investigation in water, at 25.0 degrees C, ionic strength 0.2 M (KCl). Under amine excess over the substrate, all the reactions obey pseudo-first-order kinetics and are first-order in amine. The Br?nsted-type plots are biphasic, with slopes (at high pK(a)) of beta(1) = 0.20 for the reactions of SA amines with 1 and 2 and beta(1) = 0.10 for the pyridinolysis of 1 and with slopes (at low pK(a)) of beta(2) = 0.80 for the reactions of SA amines with 1 and 2 and beta(2) = 1.0 for the pyridinolysis of 1. The pK(a) values at the curvature center (pK(a)(0)) are 7.7, 7.0, and 7.0, respectively. These results are consistent with the existence of a zwitterionic tetrahedral intermediate (T++) and a change in the rate-determining step with the variation of amine basicity. The larger pK(a)(0) value for the pyridinolysis of 1 compared to that for 2 (pK(a)(0) = 6.8) and the larger pK(a)(0) value for the reactions of SA amines with 1 relative to 2 are explained by the greater inductive electron withdrawal of PhO compared to EtO. The larger pK(a)(0) values for the reactions of SA amines with 1 and 2, relative to their corresponding pyridinolysis, are attributed to the greater nucleofugalities of SA amines compared to isobasic pyridines. The smaller pK(a)(0) value for the reactions of SA amines with 2 than with O-ethyl S-(2,4-dinitrophenyl) dithiocarbonate (pK(a)(0) = 9.2) is explained by the greater nucleofugality from T(++) of 2,4-dinitrophenoxide (DNPO(-)) relative to the thio derivative. The stepwise reactions of SA amines with 1 and 2, in contrast to the concerted mechanisms for the reactions of the same amines with the corresponding carbonates, is attributed to stabilization of T(++) by the change of O(-) to S(-). The simple mechanism for the SA aminolysis of 2 (only one tetrahedral intermediate, T(++)) is in contrast to the more complex mechanism (two tetrahedral intermediates, T(++) and T(-), the latter formed by deprotonation of T(++) by the amine) for the same aminolysis of the analogous thionocarbonate with 4-nitrophenoxide (NPO(-)) as nucleofuge. To our knowledge, this is the first example of a remarkable change in the decomposition path of a tetrahedral intermediate T by replacement of NPO(-) with DNPO(-) as the leaving group of the substrate. This is explained by (i) the greater leaving ability from T(++) of DNPO(-) than NPO(-) and (ii) the similar rates of deprotonation of both T(++) (formed with DNPO and NPO).  相似文献   

15.
Aurivillius ferroelectrics K(0.25)Na(0.25)La(0.5)Bi(2)Nb(2)O(9) (KNBN-La) and K(0.25)Na(0.25)Bi(2.5)Nb(2)O(9) (KNBN-Bi) were prepared by using solid-state reaction process. Rietveld refinements for the KNBN-La and KNBN-Bi were carried out by using powder X-ray diffraction at room temperature and they were confirmed to be two-layer Aurivillius oxides with orthorhombic space group A2(1)am. The lattice parameters are a = 5.50468(10) ?, b = 5.49217(10) ?, and c = 25.05108(35) ? for KNBN-La and a = 5.48867(6) ?, b = 5.47895(6) ?, and c = 25.10591(25) ? for KNBN-Bi. Lanthanum (La(3+)) substitution for bismuth (Bi(3+)) led to an enhancement in relaxation behavior for the KNBN-La ceramics, with a ferroelectric to paraelectric phase transition temperature (T(c)) of about 360 °C. The KNBN-La ceramics had a high remnant polarization (P(r)) of 13.6 μC cm(-2) and a field-induced strain of up to 0.031%. Particularly, the decrease in P(r) for the KNBN-La ceramics after 10(8) cumulative switching cycles was only 6%.  相似文献   

16.
17.
Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.  相似文献   

18.
Isocytosine (ICH) exists in solution as two major tautomers, the keto form with N1 carrying a proton (1a) and the keto form with N3 being protonated (1b). In water, 1a and 1b exist in equilibrium with almost equal amounts of both forms present. Reactions with a series of Pd(II) and Pt(II) am(m)ine species such as (dien)Pd(II), (dien)Pt(II), and trans-(NH(3))(2)Pt(II) reveal, however, a distinct preference of these metals for the N3 site, as determined by (1)H NMR spectroscopy. Individual species have been identified by the pD dependence of the ICH resonances. pK(a) values (calculated for H(2)O) for deprotonation of the individual tautomers complexes are 6.5 and 6.4 for the N3 linkage isomers of dienPd(II) and dienPt(II), respectively, as well as 6.2 and 6.0 for the N1 linkage isomers. The dimetalated species [(dienM)(2)(IC-N1,N3)](3+) (M = Pd(II) or Pt(II)) are insensitive over a wide range of pD. The crystal structure analysis of [(dien)Pd(ICH-N3)](NO(3))(2) is reported. Ab initio calculations have been performed for tautomer compounds of composition [(NH(3))(3)Pt(ICH)](2+), cis- and trans-[(NH(3))(2)PtCl(ICH)](+), as well as trans-[(NH(3))(2)Pt(ICH)(2)](2+). Without exception, N3 linkage isomers are more stable, in agreement with experimental findings. As to the reasons for this binding preference, an NBO (natural bond orbital) analysis for [(NH(3))(3)Pt(ICH-N3)](2+)strongly suggests that intramolecular hydrogen bonding between trans-positioned NH(3) ligands and the two exocyclic groups of the ICH is of prime importance. The calculations furthermore show a marked pyramidalization of the NH(2) group of ICH in the complex once the heterocyclic ligand forms a dihedral angle <90 degrees with the Pt coordination plane.  相似文献   

19.
A comparative study of C(18) immobilized on silica, activated carbon and a polyurethane foam, as sorbents for Pb complexed with O,O-diethyl-dithiophosphate in a flow injection preconcentration system is reported. The complex was formed in 1.0 M HCl medium and processed in a simple system using a peristaltic pump, a manual injector-commutator and a mini-column filled with the sorbent. Using ethanol as eluent, the richest 150-mul fraction was collected and measured (after discarding 150, 200 and 0 mul for the activated carbon, foam and C(18), respectively) by flame atomic absorption spectrometry. The optimum concentration of the complexing agent was 0.05% m/v for C(18) and 0.2% m/v for the activated carbon and the polyurethane foam. The best sample loading flow rate was 4.0 ml min(-1) for the activated carbon and 2.0 ml min(-1) for C(18) and the polyurethane foam, while the best elution flow rate was 1.0 ml min(-1) (activated carbon) and 0.6 ml min(-1) (C(18) and foam). It was found that beyond a certain loading sample volume, for a constant analyte mass, the signal decreased. The maximum loading sample volume, for a constant analyte mass, before the signal started to decrease, was 50 ml for the activated carbon and 150 ml for the other materials. By processing 25 ml, the enrichment factors were 23, 55 and 166 for the activated carbon, foam and C(18), respectively. The best limit of detection (3sigma) was 0.3 mug l(-1) for the C(18) (1.2 mug l(-1) for the foam and 3 mug l(-1) for the activated carbon). As shown, the C(18) has a much superior retention performance in comparison to the other two materials.  相似文献   

20.
The complexation of sulfur hexafluoride (SF(6)), a highly potent greenhouse gas, by cucurbit[6]uril (CB) was studied at various temperatures in Na(2)SO(4) aqueous solutions by (19)F and (1)H NMR. CB shows a remarkable affinity for SF(6), suggesting that it is a suitable molecular container for the design of materials tailored for SF(6) trapping. At 298 K, the equilibrium constant characterizing the inclusion of SF(6) by CB is 3.1 x 10(4) M(-1) and the residence time of SF(6) within the CB cavity is estimated to be of the order of a few seconds. The enthalpic and entropic contributions to the free energy of encapsulation were determined and are discussed. This work also reports on the interest of SF(6) in the framework of the spin-spy methodology. The advantages and drawbacks of solution-state (19)F NMR of SF(6) with respect to (129)Xe NMR are discussed. SF(6) comes forward as a versatile and informative spin-spy molecule for probing systems in solution because its detection limit by (19)F NMR reaches the micromolar range with standard equipment and because quantitative integral measurements, relaxation time measurements, and demanding experiments, such as translational diffusion coefficient measurements, are easily carried out in addition to chemical shift measurements. Solution-state (19)F NMR of SF(6) emerges as a promising alternative to (129)Xe NMR for probing cavities and for other applications relying on the encapsulation of an NMR active gaseous probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号