首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The tubular-shaped nanostructure of TiO(2) is very interesting, and highly ordered arrays of TiO(2) nanotubes (TNTs) can be easily fabricated by anodization of the Ti substrate in specific electrolytes. Here in this feature article, we review synthesis methods for various TNTs including normal, alloy, and architectural forms such as bamboos, lace, and flowers. Specific nanosize architectures such as bamboo and lace types can be regulated by alternating voltage and further anodizing. In order to extend light response of TNTs to visible solar spectra, various dopings of specific elements have been discussed. The normal and modified TNTs are suggested for applications such as dye sensitized solar cells, water splitting, photocatalytic degradation of pollutants, CO(2) reduction, sensors, energy storage devices including Li ion batteries and supercapacitors, and other applications such as flexible substrate and biomaterials.  相似文献   

2.
Titanate nanotubes (TNTs) with high aspect ratio were synthesized via a hydrothermal process. By means of a capillary filling method, the porphyrin oligomers dissolved in the tetrahydrofuran solution could be easily incorporated into the pore channels of TNTs. Transmission electron microscopy of the resulting one-dimensional TNTs/porphyrin oligomer composite showed that the pore channels of TNTs were blurred. The results of solid UV–vis diffuse reflectance spectra, fluorescence spectra and Fourier transform infrared spectra further confirmed that the porphyrin oligomers have successfully been incorporated into the pore channels of TNTs by the host–guest interaction between TNTs and the porphyrin oligomers. The investigation of thermal stability revealed that the porphyrin oligomers in the composite became more stable due to the shielding of TNTs.  相似文献   

3.
以纳米颗粒TiO2(P25)为原料,采用水热合成法制备了具有锐钛矿晶型的TiO2纳米管(TNTs),考察了水热反应温度和焙烧温度对TNTs形貌和结构的影响.以具有双官能团结构的有机分子2-巯基丙酸为偶联剂,采用原位合成和在线组装的方法将CdS量子点(QDs)负载于TNTs上,制得了CdS/TNTs可见光催化剂,研究了2-巯基丙酸浓度对CdS负载量和CdS/TNTs光催化活性的影响.结果表明,在水热温度为150oC,焙烧温度为400oC的条件下,可制得管径为8~10nm,管壁为2~3nm,管长为数百纳米的锐钛矿型TNTs.经CdSQDs修饰后,TNTs的吸收阈值拓展至580nm,在模拟可见光照射下,CdS/TNTs表现出优异的光催化降解罗丹明B性能.  相似文献   

4.
Titanate nanotubes (TNTs) have been synthesized by a hydrothermal method using rutile TiO2 powder as titanium source. The determination of the structure and morphology was characterized by XRD, FTIR, SEM and TEM. The results indicate that the TNTs successfully synthesized under hydrothermal conditions of 150 °C. The adsorption of Th(IV) on TNTs was studied as a function of contact time, pH values, ionic strength, initial Th(IV) concentration and temperature under ambient conditions by using batch technique. The results indicate that adsorption of Th(IV) on TNTs is strongly dependent on pH values, but weakly dependent on ionic strength; Adsorption kinetics was better described by the pseudo-second-order model. The adsorption isotherms are simulated by Langmuir and Freundlich models well. ΔG°, ΔH° and ΔS° free energy were calculated from experimental data, The results indicate that the adsorption of Th(IV) on TNTs is an endothermic and a spontaneous process, and increases with increasing temperature. The adsorption of Th(IV) on TNTs is mainly dominated by chemical sorption or surface complexation.  相似文献   

5.
Mechanical properties of anodized aluminum were studied using the results of dilatometric measurements of thermal expansion of anodized Al (the symmetric structure Al(2)O(3)-Al-Al(2)O(3)). The 100-microm-thick Al(2)O(3 )oxide layer was formed in 4% aqueous solution of oxalic acid in the galvanostatic regime at a current density of 20 mA cm(-2). Measurements of thermal expansion of anodized Al (Al and Mg alloy of 2.7-3.2%, and 0.3-0.6% Mn, and 0.5-0.8% Si) with the thickness of initial Al from 0.6 to 3.7 mm and ceramic from Al(2)O(3) in the temperature range of 20-500 degrees C were conducted using an automatic quartz dilatometer. Intrinsic stress in the Al layer, the values of the modulus of elasticity, and the porosity of Al oxide formed on Al of different thickness are calculated.  相似文献   

6.
Synthesis of titanate nanotubes (TNTs) from sol–gel derived amorphous TiO2 thin films under moderate hydrothermal condition has been reported. TNTs from film possess a tubular morphology that is the same crystalline phase as one synthesized from TiO2 powder so far. TNTs obtained in this study are not entangled one another but oriented and isolated on the substrate. Growth of highly oriented TNTs is observed in micro grooves of amorphous TiO2 thin film. Their orientation is also maintained with the growth of TNTs.  相似文献   

7.
We present exemplary fabrications of controlled Nickel phosphate (NiPi)/TiO2 nanotubes arrays (TNTs) in phosphate buffer for boosted photoelectrochemical (PEC) water splitting. The TNTs/NiPi composite electrodes revealed a considerably enhanced photocurrent density of 0.76 mA/cm2, up to 3-time enhancements than bare TNTs, mostly because of the enhanced charge separation, decreased carrier recombination, and improving kinetics of the water oxidation. Also, we demonstrated that the NiPi can assist the PEC features of TNTs over a varied region of pH values from 1 to 14. Incorporation of NiPi over the TNTs surface advances the light absorption features of the electrode, resulting in an enhanced photogenerated charge carrier; and promotes the reactive sites for water oxidation, which was proved by the double-layer capacitance. The TNTs/NiPi photoelectrode exhibited excellent photostabilization under continuous illumination for 5 h, and the photoconversion efficiencies were 0.45%, 3-fold enhancements than with bare TNTs under the illuminations. Overall, this work might offer an innovative approach to fabricating and designing efficient electrodes with superior contact interfaces among photoanodes and numerous co-catalysts.  相似文献   

8.
The present work reports the structural and electrochemical properties of carbon-modified nanostructured TiO(2) electrodes (C-TiO(2)) prepared by anodizing titanium in a fluoride-based electrolyte followed by thermal annealing in an atmosphere of methane and hydrogen in the presence of Fe precursors. The C-TiO(2) nanostructured electrodes are highly conductive and contain more than 1 × 10(10) /cm(2) of nanowires or nanotubes to enhance their double layer charge capacitance and electrochemical stability. Electrogenerated chemiluminescence (ECL) study shows that a C-TiO(2) electrode can replace noble metal electrodes for ultrasensitive ECL detection. Dynamic potential control experiments of redox reactions show that the C-TiO(2) electrode has a broad potential window for a redox reaction. Double layer charging capacitance of the C-TiO(2) electrode is found to be 3 orders of magnitude higher than an ideal planar electrode because of its high surface area and efficient charge collection capability from the nanowire structured surface. The effect of anodization voltage, surface treatment with Fe precursors for carbon modification, the barrier layer between the Ti substrate, and anodized layer on the double layer charging capacitance is studied. Ferrocene carboxylic acid binds covalently to the anodized Ti surface forming a self-assembled monolayer, serving as an ideal precursor layer to yield C-TiO(2) electrodes with better double layer charging performance than the other precursors.  相似文献   

9.
TiO2 nanotubes (TNTs) have received much attention over the past decade because of their unique nanostructure and physicochemical properties; in particular, TNTs can be applied in photocatalysis. In this study, degradation of methylene blue (MB) by samarium (Sm)-doped TNTs synthesized by a soft chemical process was investigated. Transmission electron microscopy revealed TNTs had diameters of approximately 10 nm and lengths of several hundreds of nanometers. MB degradation with and without ultraviolet irradiation revealed that all Sm-doped TNTs could adsorb organic molecules and were photocatalytically active. MB adsorption by Sm-doped TNT was better than by undoped TNT. Adsorption isotherm analysis showed that amounts of MB adsorbed increased on increasing the amount of Sm dopant. Introduction of Sm3+ as dopant was important for formation of oxygen vacancies in the TNTs, which enhanced molecular adsorption but did not contribute to photoreactivity because of charge state and carrier recombinations in Sm-doped TNTs.  相似文献   

10.
Dye-sensitized solar cells (DSSCs) have established themselves as an alternative to conventional solar cells owing to their remarkably high power conversion efficiency, longtime stability and low-cost production. DSSCs composed of a dyed oxide semiconductor photoanode, a redox electrolyte and a counter electrode. In these devices, conversion efficiency is achieved by ultra-fast injection of an electron from a photo excited dye into the conduction band of metal oxide followed by subsequent dye regeneration and holes transportation to the counter electrode. The energy conversion efficiency of DSSC is to be dependent on the morphology and structure of the dye adsorbed metal oxide photoanode. Worldwide considerable efforts of DSSCs have been invested in morphology control of photoanode film, synthesis of stable optical sensitizers and improved ionic conductivity electrolytes. In the present investigation, a new composite nano structured photoanodes were prepared using TiO2 nano tubes (TNTs) with TiO2 nano particles (TNPs). TNPs were synthesized by sol–gel method and TNTs were prepared through an alkali hydrothermal transformation. Working photoanodes were prepared using five pastes of TNTs concentrations of 0, 10, 50, 90, and 100 % with TNPs. The DSSCs were fabricated using Indigo carmine dye as photo sensitizer and PMII (1-propyl-3-methylimmidazolium iodide) ionic liquid as electrolyte. The counter electrode was prepared using Copper sulfide. The structure and morphology of TNPs and TNTs were characterized by X-ray diffraction and electron microscopes (TEM and SEM). The photocurrent efficiency is measured using a solar simulator (100 mW/cm2). The prepared composite TNTs/TNPs photoanode could significantly improve the efficiency of dye-sensitized solar cells owing to its synergic effects, i.e. effective dye adsorption mainly originated from TiO2 nanoparticles and rapid electron transport in one-dimensional TiO2 nanotubes. The results of the present investigation suggested that the DSSC based on 10 % TNTs/TNPs showed better photovoltaic performance than cell made pure TiO2 nanoparticles. The highest energy-conversion efficiency of 2.80 % is achieved by composite TNTs (10 %)/TNPs film, which is 68 % higher than that pure TNPs film and far larger than that formed by bare TNTs film (94 %). The charge transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra and the results showed that composite TNTs/TNPs film-based cell possessed the lowest transfer resistances and the longest electron lifetime. Hence, it could be concluded that the composite TNTs/TNPs photoanodes facilitate the charge transport and enhancing the efficiencies of DSSCs.  相似文献   

11.
A series of CeO2‐loaded titania nanotubes (CeO2‐TNTs) hybrid materials with different CeO2 loadings were synthesized by co‐precipitation method and then incorporated into epoxy resin (EP) to prepare CeO2‐TNTs flame‐retardant epoxy nanocomposites. Structure and morphology characterization indicated the successful synthesis of CeO2‐TNTs. The effect of CeO2‐TNTs with different CeO2 loading capacity on the flame retardance of EP was compared and analyzed by the thermogravimetric analysis, Cone and Raman. The results showed that CeO2 loading could increase the carbon residue of nanocomposites, reduce the peak heat release rate (PHRR) and total heat release (THR), and improve the fire safety of EP. The residual carbon content of EP/0.1CeO2‐TNTs sample at 700°C reached 19.8% with the lowest degradation rate, and the PHRR and THR were reduced to 680 kW/m2 and 32.9 MJ/m2, respectively. Such a significant improvement in flame‐retardant properties for EP could be attributed to the protective effect of CeO2‐TNTs.  相似文献   

12.
Effects of pore structure and surface chemical characteristics of titanate nanotubes (TNTs) on their adsorptive removal of organic vapors were investigated. TNTs were prepared via a hydrothermal treatment of TiO2 powders in a 10 M NaOH solution at 150?°C for 24?h, and subsequently washed with HCl aqueous solution of different concentrations. Effects of acid washing process (or the sodium content) on the microstructures and surface chemical characteristics of TNTs were characterized with nitrogen adsorption-desorption isotherms, FTIR, and water vapor adsorption isotherms. For the adsorption experiments, gravimetric techniques were employed to determine the adsorption capacities of TNTs for four organic vapors with similar heats of vaporization (i.e., comparable heats of adsorption) but varying dipole moments and structures, including n-hexane, cyclohexane, toluene, and methyl ethyl ketone (MEK), at isothermal conditions of 20 and 25?°C. The experimental data were correlated by well-known vapor phase models including BET and GAB models. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms of organic vapors on TNTs were type II, characterizing vapor condensation to form multilayers. The specific surface area (and pore volume) and hydrophilicity of TNTs were the dominating factors for the determination of their organic vapors adsorption capacity. The GAB isotherm equation fitted the experimental data more closely than the BET equation. The heats of adsorption showed that the adsorption of organic vapors on TNTs was primarily due to physical forces and adsorbates with larger polarity might induce a stronger interaction with TNTs.  相似文献   

13.
Titanate nanotube bundles assembled by several simple nanotubes were synthesized through a simple reaction between TiO2 crystallites and highly concentrated NaOH in the presence of Au or Pd sols. Due to the unique scrolling growth mechanism of titanate nanotubes (TNTs), Au or Pd clusters were encapsulated in situ by TNTs, and titanate/Au and titanate/Pd nanotube bundles were formed. In comparison with carbon nanotubes (CNTs) or active carbon that was widely used as carriers to support metal clusters, TNTs bundles can immobilize the metal clusters tightly and overcome the shortcoming of exfoliation of metal clusters from the carriers. The as-prepared titanate/metal hybrids possess mesoporosity and high surface area. The electrochemical oxidation of methanol demonstrates that titanate/Pd hybrids exhibit high electrocatalytic activity and excellent stability, and hence they should be ideal catalyst candidates in direct methanol fuel cells (DMFCs).  相似文献   

14.
The present work is dedicated to making the best of vertically-aligned TiO2 nanotubes (TNTs) array to serve as a prospectively ideal “vessel” for protein immobilization and biosensor applications. The TNTs fabricated by electrochemical anodizing possess the advantageous of perpendicular alignment and tailored tubular architecture, as well as the good biocompatibility and hydrophilicity. But the electron-transfer resistance of the as-grown (AG-) TNTs is too large for the direct electron transfer and electrochemical biosensing. A simple strategy on controllable electrochemical reduction treatment of TNTs is adopted on it, leading TNTs in situ self-doped with Ti(III), which makes the Ti(III)–TNTs much better conductivity while the tubular and crystal structure of TNTs array still well maintained. Results show that the TNTs can be used as a super vessel for rapid and substantive immobilization of hemoglobin (Hb), with a large surface electroactive Hb coverage (Γ*) of 1.5 × 10?9 mol cm?2. The enhanced direct electron transfer of Hb is commendably observed on the Ti(III)–TNTs/Hb biosensor with a couple of well-defined redox peaks compared with the AG-TNTs/Hb. The biosensor further exhibits fast response, high sensitivity and stability for the amperometric biosensing of H2O2 with the detection limit of 1.5 × 10?6 M, and the apparent Michaelis–Menten constant of 1.02 mM.  相似文献   

15.
TiO2 nanotube arrays (TNTs) electrode loaded with Zn nanoparticles was prepared by anodization and the size of Zn nanoparticle loaded on TNTs electrode was controlled bychronoamperometry deposition time. Results of SEM and XRD analysis show that Zn nanoparticles had a diameter of about 15-25 nm when the deposition time was 3-5 s. The UV-Vis diffuse reflectance spectra show the Zn loaded harvest light with 480-780 nm more effectively than the unloaded sample. The photocurrent response of Zn loaded TNTs electrodes were studied, the results showed that TNTs electrodes loaded with Zn nanoparti-cles has 50% increased photocurrent response under high-pressure mercury lamp irradiation compared with unloaded TNTs electrode.  相似文献   

16.
锂离子电池负极材料二氧化钛(TiO2)由于其零应变、环境友好和高安全性近年来得到了广泛的研究,但其较低的电子电导和离子迁移率以及较低的比容量(335 mAh·g-1)限制了其应用前景.本文梳理了一种纳米结构TiO2纳米管(TNTs)的研究历程以及最近研究进展,综述了TNTs常见的几种制备方法,即水热法、阳极氧化法和模板法及其形成机理,归纳了各种制备方法的优缺点,讨论了制备过程中各项参量对制得TNTs的影响.阐述了其晶体结构与形貌对电化学性能的影响,指出晶格取向一致、管壁厚度小,纳米管开口且同向排列的TNTs具有更好的电化学性能.同时探讨了针对该材料电导性差、比容量低而进行的包括结构设计、掺杂、复合等一系列改进措施,指出与高电导率及高比容量材料复合是一种方便有效的改进措施.最后总结了各种改性方法取得的进展及存在的不足,展望了TNTs的研究趋势和发展前景.  相似文献   

17.
TiO2 nanotubes supported amorphous Co-B(Co-B/TNTs) catalyst was prepared via impregnationchemical reduction procedure. The catalyst was characterized with transmission electron microscopy(TEM), ammonia temperature-programmed desorption(NH3-TPD), thermogravimetry-differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy. The effects of temperature and ratio of CO to H2 on the hydroformylation of 1-octene were studied. At an optimized reaction temperature(150℃) and volume ratio of CO to H2(2:1), the conversion of 1-octene can reach 97.4% with a selectivity of 23.1% for total aldehydes and n/i-aldehyde molar ratio of 40:60. To obtain higher selectivity for linear aldehydes, Co-B/TNTs modified with triphenylphosphine for the hydroformylation of 1-octene were investigated. When molar ratio of P/Co was 4, the yield of total aldehydes was the highest(31.6%) with a good selectivity for linear product(n/i-aldehyde molar ratio was 70:30). In recycle use, the Co-B/TNTs catalyst modified with triphenylphosphine could be reused five times without reducing the activity and selectivity obviously. For a comparative study, all the Co-B/TNTs to catalyze the hydroformylation of other olefins exhibited high conversion under the optimized conditions.  相似文献   

18.
光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一。尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低。因此,需要发展更加高效的催化剂。由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究。其中TiO2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象。但是对于光催化还原CO2反应来说, TiO2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率。采用窄禁带宽度半导体修饰TiO2是解决上述不足的有效途径之一。本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的TiO2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度。表征结果显示,所制备的TiO2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构。随着沉积时间的增加, Cu2O颗粒尺寸增加,具有八面体结构。 XRD和XPS结果表明, TiO2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面。我们还进一步研究了不同量Cu2O纳米颗粒修饰的TiO2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力。在可见光下,由于自身的禁带宽度,纯净的TiO2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率。在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率。在所有光催化还原CO2过程中,主要碳氢产物为甲烷。为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征。紫外-可见漫反射光谱表明, Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力。此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力。结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应。综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力。在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性。经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1) TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2) Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3) TiO2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了TiO2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程。  相似文献   

19.
Titanate nanotubes (TNTs) have attracted great interest in multidisciplinary study since their discovery. The adsorption of thorium [Th(IV)] onto TNTs in the absence and presence of humic acid (HA)/fulvic acid (FA) was studied by batch technique. The influence of pH from 2.0 to 10.0, ionic strength from 0.001 to 0.1 mol L?1 NaClO4, and coexisting electrolyte cations (Li+, Na+, K+) and antions (ClO4 ?, NO3 ?, Cl?) on the adsorption of Th(IV) onto TNTs was tested. The adsorption isotherms of Th(IV) was determined at pH 3.0 and analyzed with Langmuir and Freundlich adsorption models, respectively. The results demonstrated that the adsorption of Th(IV) onto TNTs increases steeply with increasing pH from 2.0 to 4.0. Generally, HA/FA was showed to enhance Th(IV) adsorption onto TNTs at low pH values, but to reduce Th(IV) adsorption onto TNTs at high pH values. The adsorption of Th(IV) onto TNTs was also dependent on coexisting electrolyte ions in aqueous solution under our experimental conditions. The adsorption of Th(IV) onto TNTs is exothermic and spontaneous. The findings indicating that TNTs can be used as a promising candidate for the enrichment and solidification of Th(IV) or its analogue actinides from large volume solution in real work.  相似文献   

20.
TiO2 nanotubes (TNTs) with large aspect ratio and large specific surface area were prepared from P25 (Nippon Aerosil) and applied to dye-sensitized titanium dioxide solar cells (DSSCs). Optimization of fabrication conditions, i.e., pH of the starting paste, sintering temperature for the TiO2 electrodes, electrolyte compositions of DSSCs gave the high conversion efficiency with improved open circuit voltage (V(oc)) and fill factor (FF) when compared to DSSCs made of P25. The evaluation of dye adsorption and the photo-injected electron transport such as electron diffusion coefficient (D) and electron lifetime (tau) in TNTs electrodes revealed that the higher efficiency resulted from increase of electron density with keeping much longer tau in TNTs electrodes than in P25 electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号