首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, ε(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of ε(AB)*, suggesting that the ratio of the energy scales--and the corresponding empty fluid regime--is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime.  相似文献   

2.
A density functional theory to describe adsorption of a simple fluid from a gas phase on a surface modified with pre-adsorbed chains is proposed. The chains are bonded to the surface by one of their ends, so they can form a brush-like structure. Two models are investigated. According to the first model all but the terminating segment of a chain can change the configuration during the adsorption of fluid species. The second model assumes that the chains remain "frozen", and the system is considered as a nonuniform quenched-annealed mixture. We apply simple form of interactions to study adsorption phenomena, microscopic structure, and layering transitions. Our principal findings show that new layering phase transitions can occur because of a chemical modification of the substrate under certain conditions, in comparison with nonmodified surfaces. However, opposite trends, that is, smoothing the adsorption isotherms, can also be observed, depending on the surface density of the grafted chains.  相似文献   

3.
In this work, the solvent reorganization energy is formulated within the framework of classical thermodynamics, by adding some external charges to construct a constrained equilibrium state. The derivation clearly shows that the reorganization energy is exactly the polarization cost for the inertial part of the polarization. We perform our derivation just within the framework of the first law of thermodynamics, and the final form of the reorganization energy is completely the same as that we gave in our recent work by defining a nonequilibrium solvation free energy. With the two-sphere model approximation, our solvent reorganization energy is derived as λ(0) = Δq(2)/2[1/r(D) + 1/r(A) - 2/d][(ε(-1)(op) - ε(-1)(s))/(1 - ε(-1)(s))]. This amends Marcus' model by a factor of (ε(-1)(op) - ε(-1)(s))/(1 - ε(-1)(s)), which is coupled with the solvent polarity. Making use of the modified expression of solvent reorganization energy, two recently reported electron transfer processes are investigated in representative solvents. The results show that our formula can well reproduce the experimental observations.  相似文献   

4.
We investigate an effective model Hamiltonian for organometallic complexes that are widely used in optoelectronic devices. The two most important parameters in the model are J, the effective exchange interaction between the π and π* orbitals of the ligands, and ε*, the renormalized energy gap between the highest occupied orbitals on the metal and on the ligand. We find that the degree of metal-to-ligand charge transfer character of the lowest triplet state is strongly dependent on the ratio ε*/J. ε* is purely a property of the complex and can be changed significantly by even small variations in the complex's chemistry, such as replacing substituents on the ligands. We find that small changes in ε*/J can cause large changes in the properties of the complex, including the lifetime of the triplet state and the probability of injected charges (electrons and holes) forming triplet excitations. These results give some insight into the observed large changes in the photophysical properties of organometallic complexes caused by small changes in the ligands.  相似文献   

5.
We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures of particles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, the species differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has three patches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtures with bonding energies ε(BB) = ε(AB) and ε(AA) < ε(BB), were found to exhibit an unusual negative azeotrope.  相似文献   

6.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy ε between the chaperone and the chain and the chaperone concentration N(c) can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time τ has a transition from a long-tailed distribution to a gaussian distribution with increasing ε. τ rapidly decreases and then almost saturates with increasing binding energy for a short chain; however, it has a minimum for longer chains at a lower chaperone concentration. We also show that τ has a minimum as a function of the chaperone concentration. For different ε, a nonuniversal dependence of τ on the chain length N is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either the crowding effect from a high chaperone concentration or the intersegmental binding for the high binding energy.  相似文献   

7.
We use the recent fluids density functional theory of Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005); J. Chem. Phys. 122, 094506 (2005)] to investigate the phase behavior of athermal polymer/nanoparticle blends near a substrate. The blends are modeled as a mixture of hard spheres and freely jointed hard chains, near a hard wall. There is a first order phase transition present in these blends in which the nanoparticles expel the polymer from the surface to form a monolayer at a certain nanoparticle concentration. The nanoparticle transition density depends on the length of the polymer, the nanoparticle diameter, and the overall bulk density of the system. The phase transition is due to both packing entropy effects related to size asymmetry between the components and to the polymer configurational entropy, justifying the so-called "entropic push" observed in experiments. In addition, a layered state is found at higher densities which resembles that in colloidal crystals, in which the polymer and nanoparticles form alternating discrete layers. We show that this laminar state has nearly the same free energy as the homogeneously mixed fluid in the bulk and is nucleated by the surface.  相似文献   

8.
We investigate the mechanisms of fluid transport driven by temperature gradients in nanochannels through molecular dynamics simulations. It is found that the fluid-wall interaction is critical in determining the flow direction. In channels of very low surface energy, where the fluid-wall binding energy ε(fw) is small, the fluid moves from high to low temperature and the flow is induced by a potential ratchet near the wall. In high surface energy channels, however, the fluid is pumped from low to high temperature and the pressure drop caused by the temperature gradient is the major driving force. In addition, as the fluid-wall interaction is strengthened, the flow flux assumes a maximum, where ε(fw) is close to the lower temperature T(L) of the channel and ε(fw)/kT(L) ≈ 1 is roughly satisfied.  相似文献   

9.
The temperature-dependent self-assembly of the single-chain bolaamphiphile dotriacontan-1,1'-diyl-bis[2-(trimethylammonio)ethyl phosphate] (PC-C32-PC) was investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray scattering, rheological measurements, and dynamic light scattering (DLS). At room temperature this compound, in which two phosphocholine headgroups are connected by a C(32) alkyl chain, proved to be capable of gelling water very efficiently by forming a dense network of nanofibers (Kohler et al. Angew. Chem., Int. Ed. 2004, 43, 245). A specific feature of this self-assembly process is that it is not driven by hydrogen bonds but solely by hydrophobic interactions of the long alkyl chains. The nanofibers have a thickness of roughly the molecular length and show a helical superstructure. A model for the molecular structure of the fibrils which considers the extreme constitution of the bolaamphiphile is proposed. Upon heating the suspensions three different phase transitions can be detected. Above 49 degrees C, the temperature of the main transition where the alkyl chains become "fluid", a clear low-viscosity solution is obtained due to a breakdown of the fibrils into smaller aggregates. Through mechanical stress the gel structure can be destroyed as well, indicating a low stability of these fibers. The gel formation is reversible, but as a drastic rearrangement of the molecules takes place, metastable states occur.  相似文献   

10.
We use a standard bead-spring model and molecular dynamics simulations to study the static properties of symmetric linear multiblock copolymer chains and their blocks under poor solvent conditions in a dilute solution from the regime close to theta conditions, where the chains adopt a coil-like formation, to the poorer solvent regime where the chains collapse obtaining a globular formation and phase separation between the blocks occurs. We choose interaction parameters as is done for a standard model, i.e., the Lennard-Jones fluid and we consider symmetric chains, i.e., the multiblock copolymer consists of an even number n of alternating chemically different A and B blocks of the same length N(A) = N(B) = N. We show how usual static properties of the individual blocks and the whole multiblock chain can reflect the phase behavior of such macromolecules. Also, how parameters, such as the number of blocks n can affect properties of the individual blocks, when chains are in a poor solvent for a certain range of n. A detailed discussion of the static properties of these symmetric multiblock copolymers is also given. Our results in combination with recent simulation results on the behavior of multiblock copolymer chains provide a complete picture for the behavior of these macromolecules under poor solvent conditions, at least for this most symmetrical case. Due to the standard choice of our parameters, our system can be used as a benchmark for related models, which aim at capturing the basic aspects of the behavior of various biological systems.  相似文献   

11.
We study the phase behavior of a two-component fluid in a pore with the walls modified by tethered chains. The walls are completely permeable for one component of the fluid and completely impenetrable for the second component. The fluid is perfectly mixed in a bulk phase. We have found that depending on the details of the model the fluid undergoes capillary condensation inside the pore and wetting and layering transitions at the outer walls. Moreover, we have found transitions connected with the change of symmetry of the distribution of chains and fluid inside the pore.  相似文献   

12.
Dynamic clustering associated with self-assembly in many complex fluids can qualitatively alter the shape of phase boundaries and produce large changes in the scale of critical fluctuations that are difficult to comprehend within the existing framework of theories of critical phenomena for nonassociating fluids. In order to elucidate the scattering and critical properties of associating fluids, we consider several models of equilibrium polymerization that describe widely occurring types of associating fluids at equilibrium and that exhibit the well defined cluster geometry of linear polymer chains. Specifically, a Flory-Huggins-type lattice theory is used, in conjunction with the random phase approximation, to compute the correlation length amplitude xi(o) and the Ginzburg number Gi corresponding, respectively, to the scale of composition fluctuations and to a parameter characterizing the temperature range over which Ising critical behavior is exhibited. Our calculations indicate that upon increasing the interparticle association energy, the polymer chains become increasingly long in the vicinity of the critical point, leading naturally to a more asymmetric phase boundary. This increase in the average degree of polymerization implies, in turn, a larger xi(o) and a drastically reduced width of the critical region (as measured by Gi). We thus obtain insight into the common appearance of asymmetric phase boundaries in a wide range of "complex" fluids and into the observation of apparent mean field critical behavior even rather close to the critical point.  相似文献   

13.
We report the fabrication process of isolated one-dimensional Se chains incorporated in the matrix of AlPO4-5 single crystals and the experimental investigation of the geometry, phase stability, electronic properties, and electron-phonon coupling effect of these Se chains. The structure of the helical Se chains inside the channels is discussed on the basis of X-ray scattering measurements. Thermal analysis and temperature-dependent micro-Raman measurements show that Se single chains are flexible and can convert from a weak distorted phase into another phase with strongly disordered structure ("melting" state) around 340 K. Since the electrons are confined in the one-dimensional channels, the absorption band of the Se chain is obviously blue shifted compared with that of trigonal Se. With increasing temperature, this band shifts linearly to the lower energy side, in sharp contrast to the nonlinear temperature coefficient of trigonal Se, which is attributed to the greatly diminished interchain interaction and the weakening of the electron-optical phonon coupling in a low-dimensional system. In the vicinity of the absorption band, both first-order and second-order Raman signals for the Se chain are enhanced, due to the strong electron-phonon coupling when the excitation laser energy matches the electronic transition in isolated Se chains.  相似文献   

14.
The crystallization of proteins or colloids is often hindered by the appearance of aggregates of low fractal dimension called gels. Here we study the effect of electrostatics upon crystal and gel formation using an analytic model of hard spheres bearing point charges and short range attractive interactions. We find that the chief electrostatic free energy cost of forming assemblies comes from the entropic loss of counterions that render assemblies charge-neutral. Because there exists more accessible volume for these counterions around an open gel than a dense crystal, there exists an electrostatic entropic driving force favoring the gel over the crystal. This driving force increases with increasing sphere charge, but can be counteracted by increasing counterion concentration. We show that these effects cannot be fully captured by pairwise-additive macroion interactions of the kind often used in simulations, and we show where on the phase diagram to go in order to suppress gel formation.  相似文献   

15.
The glycosyl carrier lipids, dolichylphosphate (C(95)-P) and undecapreylphosphate (C(55)-P) are key molecular players in the synthesis and translocation of complex glycoconjugates across cell membranes. The molecular mechanism of how these processes occur remains a mystery. Failure to completely catalyze C(95)-P-mediated N-linked protein glycosylation is lethal, as are defects in the C(55)-P-mediated synthesis of bacterial cell surface polymers. Our recent NMR studies have sought to understand the role these "super-lipids" play in biosynthetic and translocation pathways, which are of critical importance to problems in human biology and molecular medicine. The PIs can alter membrane structure by inducing in the lamellar phospholipids (PL) bilayer a non-lamellar or hexagonal (Hex(II)) structure. Membrane proteins that bind PIs contain a transmembrane binding motif, designated a PI recognition sequence (PIRS). Herein we review our recent combination of (1)H- and (31)P NMR spectroscopy and energy minimized molecular modeling studies that have determined the preferred orientation of PIs in model phospholipids membranes. They also show that the addition of a PIRS peptide to nonlamellar membranes induced by the PIs can reverse the Hex(II) phase back to a lamellar structure. Our molecular modeling calculations have also shown that as many as five PIRS peptides can bind to a single PI molecule. These findings lead to the hypothesis that the PI-induced Hex(II) structure may have the potential of forming a membrane channel that could facilitate glycoconjugate translocation processes. This is an alternate hypothesis to the possible existence of hypothetical "flippases" to accomplish movement of hydrophilic sugar chains across hydrophobic membranes.  相似文献   

16.
Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens.  相似文献   

17.
We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls.The non-adsorption case of adsorption interaction energyε=0 and the weak adsorption case ofε=-1 are considered for the compact polymer chains with different chain lengths N and different separation distances between two walls D.Several special entropy effects on the confined compact polymer chains,such as a damped oscillation in the segment density profile for the large separation distance D,are observed and discussed for different separation distances D in the non-adsorption case.In the weak adsorption case,investigations on the segment density profiles indicate that the competition between the entropy and adsorption effects results in an obvious depletion layer.Moreover,the scaling laws of the damped oscillation period T_d and the depletion layer width L_d are obtained for the confined compact chains.Most of these results are obtained for the first time so far as we know,which are expected to understand the properties of the confined compact polymer chains more completely.  相似文献   

18.
This review focuses on the use of mass spectrometry to examine the gas phase ion chemistry of metal clusters. Ways of forming gas phase clusters are briefly overviewed and then the gas phase chemistry of silver clusters is discussed to illustrate the concepts of magic numbers and how reactivity can be size dependent. The chemistry of other bare and ligated metal clusters is examined, including mixed metal dimer ions as models for microalloys. Metal clusters that catalyze gas phase chemical reactions such as the oxidation of CO and organic substrates are reviewed. Finally the interface between nanotechnology and mass spectrometry is also considered.  相似文献   

19.
To aid in the understanding of cellulose ultrastructure, computer modelling has been employed to create a model of monoclinic (I) native cellulose. This was achieved by building a chain of cellulose, which was used in a two chain unit cell. An energy minimized microfibril model was created from several of these unit cells. A major advantage of this model is that it is a large scale unconstrained, isolated system. Thus, it facilitates the study of surface as well as central chains and provides a working model of a cellulose microfibril. An extensive analysis was carried out of intermolecular non-bond interactions and how they might contribute to the stability of the structure of crystalline native cellulose. 0969--0239 © 1998 Blackie Academic & Professional  相似文献   

20.
We report extensive Monte Carlo and event-driven molecular dynamics simulations of the fluid and liquid phase of a primitive model for silica recently introduced by Ford et al. [J. Chem. Phys. 121, 8415 (2004)]. We evaluate the isodiffusivity lines in the temperature-density plane to provide an indication of the shape of the glass transition line. Except for large densities, arrest is driven by the onset of the tetrahedral bonding pattern and the resulting dynamics is strong in Angell's classification scheme [J. Non-Cryst. Solids 131-133, 13 (1991)]. We compare structural and dynamic properties with corresponding results of two recently studied primitive models of network forming liquids-a primitive model for water and an angular-constraint-free model of four-coordinated particles-to pin down the role of the geometric constraints associated with bonding. Eventually we discuss the similarities between "glass" formation in network forming liquids and "gel" formation in colloidal dispersions of patchy particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号