首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon clusters of 13 to 43 atoms were studied with the semi-empirical method SINDO1. Crystalline structures of face-centered cubic (fcc), hexagonal close packed (hcp) and diamond type and noncrystalline structures of icosahedral type were compared. Noncrystalline structures are most stable for clusters up to 13 atoms. Clusters with 19 and more atoms of the fcc structure are preferable to the less dense diamond structure. With more than 35 Si atoms, the diamond structure is favored over the hcp structure. The binding energy of fcc and hcp structures decreases and that of the diamond structure increases with increasing cluster size. A similar trend is observed for the HOMO-LUMO energy gap which is taken as a measure of the band gap.  相似文献   

2.
We determine and compare the thermodynamic properties of mono- and divacancies in the face-centered-cubic and hexagonal-close-packed hard-sphere crystals via a modified grand canonical ensemble. Widom-type particle insertion was employed to estimate the free energy of formation of mono- and divacancies, and the results are supported by an alternative approach, which quantifies the entropy gain of the neighbor particles. In hcp crystal, we found a strong anisotropy in the orientational distribution of vacancies and observe an eightfold increase in the number of divacancies in the hexagonal plane compared to the one in the out of plane at highest density of interest. This phenomenon is induced by the different arrangement and behavior of the shared nearest neighbor particles, which are located at the same distance from each vacant site in divacancy. The effect of divacancies on the free energy is to reduce that of the hcp crystal relative to the fcc by around 7 x 10(-6)kBT at melting.  相似文献   

3.
The synthesis of ultrathin face‐centered‐cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal‐close‐packed (hcp) Au square sheets (AuSSs). The Pt‐layer growth results in a hcp‐to‐fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f‐oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.  相似文献   

4.
Recent experiments report that an early nucleating crystalline structure (or polymorph) may nucleate another polymorph. We use molecular dynamics simulations to model this phenomenon known as cross-nucleation. We study the onset of crystallization in a liquid of Lennard-Jones particles cooled at a temperature 22% below the melting temperature. We show that growth proceeds through the successive cross-nucleation of the metastable hexagonal close-packed (hcp) polymorph on the stable face-centered cubic (fcc) polymorph and of the stable fcc polymorph on the metastable hcp polymorph. This finding is in agreement with the experimental results which demonstrated that the cross-nucleation of a stable polymorph on a metastable polymorph is just as likely as the cross-nucleation of a metastable polymorph on a stable polymorph. We then extend our findings established in the case of the homogeneous crystal nucleation to a situation of practical interest, i.e., when a seed of the stable polymorph is used. By studying the crystal growth from the (111) plane of a perfect fcc crystal, we show that, again, growth proceeds through the cross-nucleation of the hcp and fcc structures.  相似文献   

5.
In this work, we studied the poisoning of a nickel surface due to carbon. Performing ab initio simulations, within the framework of density functional theory, we computed the surface energy of the nickel (111) surface as a function of carbon coverage. On the basis of these results, we can assert that the stable state of the nickel/carbon surface is either a clean nickel surface or a fully carbon-covered nickel surface, which has a graphitic configuration. The relative stability of the two states depends on the temperature and partial pressure of the carbon gas. At fixed nominal carbon coverage, the most stable configurations are those forming carbon clusters. However, the nickel sites hosting these clusters change from hexagonal close packed/face centered cubic (hcp/fcc) sites to on-top sites when going toward larger clusters. This indicates that poisoning due to graphitic patches occurs on on-top sites.  相似文献   

6.
Tuning the crystal phase of metal alloy nanomaterials has been proved a significant way to alter their catalytic properties based on crystal structure and electronic property. Herein, we successfully developed a simple strategy to controllably synthesize a rare crystal structure of hexagonal close‐packed (hcp) NiFe nanoparticle (NP) encapsulated in a N‐doped carbon (NC) shell (hcp‐NiFe@NC). Then, we systemically investigated the oxygen evolution reaction (OER) performance of the samples under alkaline conditions, in which the hcp‐NiFe@NC exhibits superior OER activity compared to the conventional face‐centered cubic (fcc) NiFe encapsulated in a N‐doped carbon shell (fcc‐NiFe@NC). At the current densities of 10 and 100 mA cm?2, the hcp‐NiFe@NC with Fe/Ni ratio of ≈5.4 % only needs ultralow overpotentials of 226 mV and 263 mV versus reversible hydrogen electrode in 1.0 m KOH electrolyte, respectively, which were extremely lower than those of fcc‐NiFe@NC and most of other reported NiFe‐based electrocatalysts. We proposed that hcp‐NiFe possesses favorable electronic property to expedite the reaction on the NC surface, resulting higher catalytic activity for OER. This research provides a new insight to design more efficient electrocatalysts by considering the crystal phase correlated electronic property.  相似文献   

7.
Herein, we report an epitaxial‐growth‐mediated method to grow face‐centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd–Cu alloy. Induced by the galvanic replacement between Ru and Pd–Cu alloy, a shape transformation from a Pd–Cu@Ru core–shell to a yolk–shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd–Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials.  相似文献   

8.
Colloid-colloid interactions in charge-stabilized dispersions can to some extent be represented by the hard-core Yukawa model. The crystallization process and polymorph selection of hard-core Yukawa model are studied by means of smart Monte Carlo simulations in the region of face-centered-cubic (fcc) phase. The contact value of hard-core Yukawa potential and the volume fraction of the colloids are fixed, while the Debye screening length can be varied. In the early stage of the crystallization, the precursors with relatively ordered liquid structure have been observed. Although the crystal structure of thermodynamically stable phase is fcc, the system crystallizes into a mixture of fcc and hexagonal close-packed (hcp) structures under small Debye screening length since the colloidal particles act as effective hard spheres. In the intermediate range of Debye screening length, the system crystallizes into a mixture of fcc, hcp, and body-centered-cubic (bcc). The existence of metastable hcp and bcc structures can be interpreted as a manifestation of the Ostwald’s step rule. Until the Debye screening length is large enough, the crystal structure obtained is almost a complete fcc suggesting the system eventually reaches to a thermodynamically stable state.  相似文献   

9.
Although face‐centered cubic (fcc), body‐centered cubic (bcc), hexagonal close‐packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix‐packed (fcc and non‐fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au49(2,4‐DMBT)27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single‐crystal X‐ray crystallography, which revealed that Au49(2,4‐DMBT)27 contains a unique Au34 kernel consisting of one quasi‐fcc‐structured Au21 and one non‐fcc‐structured Au13 unit (where 2,4‐DMBTH=2,4‐dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non‐fcc structure.  相似文献   

10.
The hexagonal close packed (hcp) and face centered cubic (fcc) structures of helium are studied by using a new ab initio computational model for large complexes comprising small subsystems. The new model is formulated within the framework of the energy incremental scheme. In the calculation of intra- and intersystem energies, model systems are introduced. To each subsystem associated is a set of partner subsystems defined by a vicinity criterion. In the independent calculations of intra- and intersystem energies, the calculations are performed on model subsystems defined by the subsystems considered and their partner subsystems. A small and a large basis set are associated with each subsystem. For partner subsystems in a model system, the small basis set is adopted. By introducing a particular decomposition scheme, the intermolecular potential is written as a sum of effective one-body potentials. The binding energy per atom in an infinite crystal of atoms is the negative value of this one-body potential. The one-body potentials for hcp and fcc structures are calculated for the following nearest neighbor distances (d0): 4.6, 5.1, 5.4, 5.435, 5.5, 5.61, and 6.1 a.u. The equilibrium distance is 5.44 a.u. for both structures. The equilibrium dimer distance is 5.61 a.u. For the larger distances, i.e., d0 > 5.4 a.u., the difference of the effective one-body potentials for the two structures is less than 0.2 microE(h). However, the hcp structure has the lowest effective one-body potential for all the distances considered. For the smallest distance the difference in the effective one-body potential is 3.9 microE(h). Hence, for solid helium, i.e., helium under high pressure, the hcp structure is the preferred one. The error in the calculated effective one-body potential for the distance d0 = 5.61 a.u. is of the order of 1 microE(h) (approximately 0.5%).  相似文献   

11.
Melting and homogeneous crystallization in a Lennard-Jones system of 10,976 atoms in a model box with periodic boundary conditions were investigated by the molecular dynamics method in an NVE ensemble. Crystal melting occurs by arbitrary generation and growth of local defects transformed into regions of a disordered phase. These defects gradually span the entire space of the sample, absorbing the residual islands of crystal. Homogeneous crystallization of a liquid starts with generation of crystal nuclei which grow into defective crystals. The resulting crystal varies in structure between different realizations of the model. Face-centered cubic (fcc) structures prevail. A hexagonal close packing (hcp) structure is present on the boundaries of fcc regions and arises from disordering in alternation of atomic planes. Multiple twinning of the fcc structure is observed, and aggregates with fivefold symmetry have been found.  相似文献   

12.
We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.  相似文献   

13.
We report results of Monte Carlo simulations showing that the presence of vacancies does not affect the relative stability of stress-free fcc and hcp hard-sphere crystals.  相似文献   

14.
The knowledge of the exact shapes of micelles in various micellar phases found in both lyotropic and thermotropic liquid crystals is very important to our understanding of the underlying principles of molecular self-assembly. In the current paper we present a detailed structural study of the hexagonal close packed (hcp, space group P63/mmc) micellar phase, observed in the binary mixtures of nonionic surfactant C12EO8 and water. The reconstructed electron density map of the phase shows perfectly spherical micelles. A spherical core/shell model of micelles, which fits the observed X-ray diffraction pattern satisfactorily, is subsequently constructed. The results confirm the previous assumption that the hcp phase consists of spherical close contacting micelles, each of which contains a low-density core of aliphatic parts and a high-density shell of hydrated ethylene oxide segments, with the gaps between the micelles filled by pure water.  相似文献   

15.
We describe the self-assembly of gold nanoparticles (Au NPs) protected with newly synthesized discotic liquid crystalline molecules of hexaalkoxy-substituted triphenylene (TP) in mixed toluene/methanol solvent. The stripelike (i.e., 2D consisting of linear 1D in stripe) self-assembly is realized successfully by the aid of pi-pi stacking of TP ligand on Au NPs. The smaller Au NPs with TP (AuTP) or the longer alkyl chain between TP and the gold core provide more free spaces among TP moieties. These spaces allow easy insertion of TP on adjacent AuTPs to lead an interparticle pi-pi interaction to form the stripelike arrangement. The solvent hydrophilicity can also serve as a controlled index to tune arrangement among stripelike, hexagonal close packed (hcp), or disorder. We have changed the solvent hydrophilicity by changing the ratio of methanol to toluene, which affects the balance of solution of AuTP (in toluene) and deposition (in methanol). The larger space between TPs and appropriate solvent hydrophilicity realize stripelike self-assembly caused by a strong pi-pi interaction between TPs, which was characterized by TEM, as well as fluorescence, dynamic light scattering, and 1H NMR spectra.  相似文献   

16.
We report on hexagonal close-packed (hcp) palladium (Pd)–boron (B) nanocrystals (NCs) by heavy B doping into face-centered cubic (fcc) Pd NCs. Scanning transmission electron microscopy–electron energy loss spectroscopy and synchrotron powder X-ray diffraction measurements demonstrated that the B atoms are homogeneously distributed inside the hcp Pd lattice. The large paramagnetic susceptibility of Pd is significantly suppressed in Pd–B NCs in good agreement with the reduction of density of states at Fermi energy suggested by X-ray absorption near-edge structure and theoretical calculations.  相似文献   

17.
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.  相似文献   

18.
The growth of noble-metal single crystals via the flame fusion method was developed in the 1980s. Since then, there have been no major advancements to the technique until the recent development of the controlled-atmosphere flame fusion (CAFF) method to grow non-noble Ni single crystals. Herein, we demonstrate the generality of this method with the first preparation of fcc Cu as well as the first hcp and bcc single crystals of Co and Fe, respectively. The high quality of the single crystals was verified using scanning electron microscopy and Laue X-ray backscattering. Based on Wulff constructions, the equilibrium shapes of the single-crystal particles were studied, confirming the symmetry of the fcc, hcp, and bcc single-crystal lattices. The low cost of the CAFF method makes all kinds of high-quality non-noble single crystals independent of their lattice accessible for use in electrocatalysis, electrochemistry, surface science, and materials science.  相似文献   

19.
Seven-nanometer cobalt nanocrystals are synthesized by colloidal chemistry. Gentle annealing induces a direct structural transition from a low crystalline state to the hexagonal close packed (hcp) phase without changing the size, size distribution, and the lauric acid passivating layer. The hcp structured nanocrystals can be easily redispersed in solvent for further application and processing. We found that the magnetization at saturation and the magnetic anisotropy are strongly modified through the annealing process. Monolayer self-assembly of the hcp cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. This work demonstrates a novel approach for obtaining small size hcp structured cobalt magnetic nanocrystals for many technological applications.  相似文献   

20.
分子动力学(MD)模拟常采用径向分布函数(RDF)、Honeycutt-Anderson (HA)键型指数法、原子团类型指数法(CTIM)表征物相的微观结构. 本文依据CTIM 理论, 对CTIM 进一步发展, 使CTIM 不仅能够表征bcc\fcc\hcp\非晶体, 也能表征其它晶系的晶体结构. 本文采用CTIM 完成Zn-Mg 合金标准晶体的结构表征和Zn-Mg扩散体系物相分布的分析. 结果表明: 合金组元的CTIM指数不仅反映了Mg21Zn25、MgZn2、Mg2Zn11晶体结构的差异, 也说明了Mg4Zn7、MgZn2晶体结构十分相近. Zn-Mg扩散体系两步法模拟后, 体系两端交替分布着hcp 与fcc 结构; 体系中部形成大量的非晶体; Zn原子端交替分布着hcp 与fcc 结构的界面区域主要是Zn12-C类原子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号