首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction of plane harmonic waves with a thin elastic inclusion in the form of a strip in an infinite body (matrix) under plane strain conditions is studied. It is assumed that the bending and shear displacements of the inclusion coincide with the displacements of its midplane. The displacements in the midplane are found from the theory of plates. The priblem-solving method represents the displacements as discontinuous solutions of the Lamé equations and finds the unknown discontinuities solving singular integral equations by the numerical collocation method. Approximate formulas for the stress intensity factors at the ends of the inclusion are derived  相似文献   

3.
The problem of an elliptic inclusion embedded in an infinite matrix subjected to a uniform magnetic induction is considered in this paper. Basing upon the two-dimensional magnetoelastic formulation, the technique of conformal mapping, and the method of analytical continuation, a general solution of magnetic field quantities and the magnetoelastic stresses are obtained for both the matrix and the inclusion. Comparison is made with several special cases of which the analytical solutions can be found in the literature, which shows that the solutions presented here are general and exact. Moreover, the magnetoelastic stresses at the interface between the inclusion and the matrix are presented with figures.  相似文献   

4.
A Boundary Element Method (BEM) is described to compute the scattering of elastic waves by an axisymmetric inclusion in an infinite elastic medium. The boundary loads applied to the inclusion is expanded in terms of Fourier series in an infinite space. The boundary integral equation is solved in the general direction of the axisymmetric inclusion by BEM. The problem of the 3-D scattering of elastic waves is reduced to a 1-Done. According to the geometric features of the axisymmetric in clusion the ring shell elements are adopted in this method. A comparison is made with other BEM methods. The numerical results show this method can reduce the amount of calculation and enhance the speed of convergence. Supported by Foundation of Ph. D Program of State Education Commission of China  相似文献   

5.
Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.  相似文献   

6.
7.
The problem discussed in this paper is that of a misfitting circular inclusion in an infinite elastic medium which contains a straight crack. The crack is stress free. The stresses develop in the elastic medium because of the misfit. The point force method is used to solve the problem. The problem reduces to finding two sets of complex potential functions: {(z), (z)}: One for the infinite medium and the other for the misfitting inclusion. The solution has been obtained in closed form. Graphs are drawn for stress intensity at the crack tip and also for normal, shear and hoop stresses at the common interface of medium and misfitting inclusion.  相似文献   

8.
9.
We solve the problem on the interaction of plane elastic nonstationary waves with a thin elastic strip-shaped inclusion. The inclusion is contained in an unbounded body (matrix) which in under conditions of plane strain. It is assumed that the condition of perfect adhesion between the inclusion and the matrix is satisfied. Because of the small thickness of the inclusion we assume that the bending and shear displacements at any inclusion point coincide with the displacements of the corresponding points of its midplane. The displacements on the midplane itself are found from the corresponding equations of the theory of plates. The statement of the boundary conditions for these equations takes into account the forces and moments acting on the inclusion edges from the matrix. The solution method is based on representing the displacements in the space of Laplace transforms as a discontinuous solution of the Lame’ equations for the plane strain with subsequent determining the transforms of the unknown jumps from integral equations. The passage to the original functions is performed numerically by methods based on replacement of the Mellin integral by the Fourier series. As a result, we obtain approximate formulas for calculating the stress intensity factors for the inclusion. These formulas are used to study the time dependence of the stress intensity factors and the influence of the inclusion rigidity on their values. We also study the possibility of treating inclusions of high rigidity as absolutely rigid inclusions.  相似文献   

10.
Scattering of SH wave from an interface cylindrical elastic inclusion with a semicircular disconnected curve is investigated. The solution of dynamic stress concentration factor is given using the Green's function and the method of complex variable functions. First, the space is divided into upper and lower parts along the interface. In the lower half space, a suitable Green's function for the problem is constructed. It is an essential solution of the displacement field for an elastic half space with a semi-cylindrical hill of cylindrical elastic inclusion while bearing out-plane harmonic line source load at the horizontal surface. Thus, the semicircular disconnected curve can be constructed when the two parts are bonded and continuous on the interface loading the undetermined anti-plane forces on the horizontal surfaces. Also, the expressions of displacement and stress fields are obtained in this situation. Finally, examples and results of dynamic stress concentration factor are given. Influences of the cylindrical inclusion and the difference parameters of the two mediators are discussed.  相似文献   

11.
Scattering of SH wave from an interface cylindrical elastic inclusion with a semicircular disconnected curve is investigated.The solution of dynamic stress concentration factor is given using the Gteen's function and the method of complex variable functions.First,the space is divided into upper and lower parts along the interface.In the lower half space,a suitable Green's function for the problem is constructed.It is an essential solution of the displacement field for an elastic half space with a semi-cylindrical hill of cylindrical elastic inclusion while bearing out-plane harmonic line source load at the horizontal surface.Thus,the semicircular disconnected curve can be constructed when the two parts are bonded and continuous on the interface loading the undetermined anti-plane forces on the horizontal surfaces.Also,the expressions of displacement and stress fields are obtained in this situation.Finally,examples and results of dynamic stress concentration factor are given.Influences of the cylindrical inclusion and the difierence parameters of the two mediators are discussed.  相似文献   

12.
13.
根据含圆形嵌体平面问题在极坐标下的弹性力学基本解,使用Betti互换定理,在有限部积分意义下将问题归结为两个以裂纹岸位移间断为基本未知量、对于Ⅰ型和Ⅱ型问题相互独立的超奇异积分方程,对含圆形嵌体弹性平面中的径向裂纹问题进行了研究.根据有限部积分原理,建立了问题的数值算法.计算结果表明,嵌体半径、裂纹位置及材料剪切弹性模量等都对裂纹应力强度因子具有较为明显的影响.  相似文献   

14.
We solve the problem on the interaction of plane elastic harmonic waves with a thin elastic strip-shaped inclusion. The inclusion is contained in an unbounded body (matrix) that is under plane strain conditions. The normal forces applied by the medium to the inclusion side edges are taken into account. Because of the small thickness of the inclusion, we assume that its flexural rigidity is zero and that the shear displacements at any of its points coincide with the displacements of the corresponding points of its midplane. The displacements on the midplane itself can be found from the corresponding equation of the theory of plates. The solution method consists in representing the displacements as discontinuous solutions of the Lamé equations and then determining the unknown jump from a singular integral equation. This equation is solved numerically by the collocation method, and formulas for the approximate calculation of the stress intensity factors near the inclusion ends are obtained.  相似文献   

15.
We solve the problem of determining the stress state near a thin elastic inclusion in the form of a strip of finite width in an unbounded elastic body (matrix) with plane nonstationary waves propagating through it and with the forces exerted by the ambient medium taken into account. We assume that the matrix is in the plane strain state, and the smooth contact conditions are realized on both sides of the inclusion. The method for solving this problem consists in using the integral Laplace transform with respect to time and in representing the stress and displacement images in terms of the discontinuous solution of Lamé equations in the case of plane strain. As a result, the initial problem is reduced to a system of singular integral equations for the transforms of the unknown stress and displacement jumps. To invert the Laplace transform, we use a numerical method based on replacing the Mellin integral by the Fourier series. As a result, we obtain approximate formulas for calculating the stress intensity factors (SIF) for the inclusion, which are used to study the SIF time-dependence and its influence on the values of the inclusion rigidity. We also studied the possibility of considering the inclusions of higher rigidity as absolutely rigid inclusions.  相似文献   

16.
The present paper examines the problems related to the axial, lateral, and rotational loading of a rigid cylindrical inclusion which is embedded in bonded contact at the boundary of an isotropic elastic half space. The rigid inclusion is modeled as a field of distributed forces which represent the normal and shear tractions that act on the inclusion-elastic-medium interface. The intensities of these distributed tractions are determined by enforcing displacement compatibility conditions at discrete locations of the interface. These compatibility conditions are derived from rigid-body displacement modes appropriate for each loading. The results derived from this numerical scheme are compared with equivalent results derived via analytical techniques which focus on the solution of the governing integral-equation schemes and other approximate-solution schemes. The numerical results presented in the paper illustrate the manner in which the generalized stiffnesses of the embedded inclusion are influenced by its geometry and Poisson's ratio of the half-space region.  相似文献   

17.
A solution is presented for the three dimensional static thermoelastic problem of an absolutely rigid inclusion (anticrack) in the case when a uniform heat flow is directed along the inclusion plane. By using the potential method and the Fourier transform technique, the problem is reduced to a system of coupled two-dimensional singular integral equations for the shear stress jumps across the inclusion. As an illustration, a typical application to the circular anticrack is presented. Explicit expressions for the thermal stresses in the inclusion plane are obtained and discussed from the point of view of material failure.  相似文献   

18.
The paper presents the solution of the problem of determining the stress state in an elastic matrix containing a rigid inclusion of the shape of a thin cylindrical shell. It is assumed that harmonic vibrations occur in the matrix under the conditions of axial symmetry (the symmetry axis is the inclusion axis) and the conditions of full adhesion between the inclusion and the matrix are satisfied. The vibrations are caused by the propagation of a plane wave whose front is perpendicular to the inclusion axis. The solution method is based on representing the displacements in the matrix as discontinuous solutions of the equations of axisymmetric oscillations of an elastic medium with unknown stress jumps on the inclusion surface. The realization of the boundary conditions for these jumps leads to a system of integral equations. Its solution is constructed numerically by the mechanical quadrature method with the use of special quadrature formulas for specific integrals. It is numerically investigated how the ratio of the inclusion geometric dimensions and the propagating wave frequency affect the stress concentration near the inclusion.  相似文献   

19.
A method is proposed to investigate the behavior of an axisymmetric system consisting of an infinite thin elastic cylindrical shell immersed in an infinite elastic medium, filled with a perfect compressible fluid, and containing an oscillating spherical inclusion. The system is subjected to periodic excitation. The task is to detect so-called resonant phenomena, to establish conditions that cause them, and to examine the possibilities of using the characteristic parameters of such a hydroelastic system to influence these conditions. The method allows transforming the general solutions of mathematical physics equations from one coordinate system to another to obtain exact analytic solutions (in the form of Fourier series) to interaction problems for systems of rigid and elastic bodies __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 82–97, July 2006.  相似文献   

20.
Summary The mixed boundary value problem of the contact of two plane elastic bodies of arbitrary shape is solved for zero friction in their contact zone. It is reduced to a system of four singular integral equations referred to the contact zone and the remaining parts of the boundaries of the two bodies. The system is complemented by two more equations derived from the single-valuedness of the displacements along the contact boundaries. The solution of these equations yields the distribution of the contact stresses and the contact length. The method is applied to the symmetric case of an infinite elastic plate containing an oversized elastic inclusion, with and without axial forces applied to the plate at infinity. The evolution of contact relaxation and the progress of the gap between the inclusion and the plate is also given.
Der ebene reibungslose Kontakt von zwei elastischen Körpern — Das Problem der Einlagerung
Übersicht Das gemischte Randwertproblem der Berührung zweier ebener elastischer Körper von beliebiger Form wird im Falle verschwindender Reibung in der Kontaktzone gelöst. Das Problem wird reduziert auf ein System von vier singulären Integralgleichungen, welche sich auf die Kontaktzone und die übrigen Ränder der zwei Körper beziehen. Das System wird mit zwei weiteren Gleichungen vervollständigt, welche von der Eindeutigkeit der Verschiebungen längs der berührenden Ränder hergeleitet werden. Die Lösung dieser Gleichungen gibt die Verteilung der Kontaktspannungen und die Kontaktlänge. Die Methode wird auf den symmetrischen Fall einer unendlichen elastischen Platte (mit und ohne axiale Kräfte auf den unendlich fernen Rändern), welche eine elastische Einlagerung mit Übermaß enthält, angewandt. Die Entwicklung der Kontaktauflösung und der Vorschrift der Lücke zwischen Einlagerung und Platte werden mit Hilfe der Lösung obiger Gleichungen angegeben.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号